SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Makkonen Risto) "

Sökning: WFRF:(Makkonen Risto)

  • Resultat 1-15 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Acosta Navarro, Juan Camilo, 1983- (författare)
  • Anthropogenic influence on climate through changes in aerosol emissions from air pollution and land use change
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Particulate matter suspended in air (i.e. aerosol particles) exerts a substantial influence on the climate of our planet and is responsible for causing severe public health problems in many regions across the globe. Human activities have altered the natural and anthropogenic emissions of aerosol particles through direct emissions or indirectly by modifying natural sources. The climate effects of the latter have been largely overlooked. Humans have dramatically altered the land surface of the planet causing changes in natural aerosol emissions from vegetated areas. Regulation on anthropogenic and natural aerosol emissions have the potential to affect the climate on regional to global scales. Furthermore, the regional climate effects of aerosol particles could potentially be very different than the ones caused by other climate forcers (e.g. well mixed greenhouse gases). The main objective of this work was to investigate the climatic effects of land use and air pollution via aerosol changes.Using numerical model simulations it was found that land use changes in the past millennium have likely caused a positive radiative forcing via aerosol climate interactions. The forcing is an order of magnitude smaller and has an opposite sign than the radiative forcing caused by direct aerosol emissions changes from other human activities. The results also indicate that future reductions of fossil fuel aerosols via air quality regulations may lead to an additional warming of the planet by mid-21st century and could also cause an important Arctic amplification of the warming. In addition, the mean position of the intertropical convergence zone and the Asian monsoon appear to be sensitive to aerosol emission reductions from air quality regulations. For these reasons, climate mitigation policies should take into consideration aerosol air pollution, which has not received sufficient attention in the past.
  •  
2.
  • Bergman, Tommi, et al. (författare)
  • Description and evaluation of a secondary organic aerosol and new particle formation scheme within TM5-MP v1.2
  • 2022
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 15:2, s. 683-713
  • Tidskriftsartikel (refereegranskat)abstract
    • We have implemented and evaluated a secondary organic aerosol scheme within the chemistry transport model TM5-MP in this work. In earlier versions of TM5-MP the secondary organic aerosol (SOA) was emitted as Aitken-sized particle mass emulating the condensation. In the current scheme we simulate the formation of secondary organic aerosol from oxidation of isoprene and monoterpenes by ozone and hydroxyl radicals, which produce semi-volatile organic compounds (SVOCs) and extremely low-volatility compounds (EVOCs). Subsequently, SVOCs and ELVOCs can condense on particles. Furthermore, we have introduced a new particle formation mechanism depending on the concentration of ELVOCs. For evaluation purposes, we have simulated the year 2010 with the old and new scheme; we see an increase in simulated production of SOA from 39.9ĝ€¯Tgĝ€¯yr-1 with the old scheme to 52.5ĝ€¯Tgĝ€¯yr-1 with the new scheme. For more detailed analysis, the particle mass and number concentrations and their influence on the simulated aerosol optical depth are compared to observations. Phenomenologically, the new particle formation scheme implemented here is able to reproduce the occurrence of observed particle formation events. However, the modelled concentrations of formed particles are clearly lower than in observations, as is the subsequent growth to larger sizes. Compared to the old scheme, the new scheme increases the number concentrations across the observation stations while still underestimating the observations. The organic aerosol mass concentrations in the US show a much better seasonal cycle and no clear overestimation of mass concentrations anymore. In Europe the mass concentrations are lowered, leading to a larger underestimation of observations. Aerosol optical depth (AOD) is generally slightly increased except in the northern high latitudes. This brings the simulated annual global mean AOD closer to the observational estimate. However, as the increase is rather uniform, biases tend to be reduced only in regions where the model underestimates the AOD. Furthermore, the correlations with satellite retrievals and ground-based sun-photometer observations of AOD are improved. Although the process-based approach to SOA formation causes a reduction in model performance in some areas, overall the new scheme improves the simulated aerosol fields.
  •  
3.
  • Blichner, Sara M., et al. (författare)
  • Implementing a sectional scheme for early aerosol growth from new particle formation in the Norwegian Earth System Model v2 : Comparison to observations and climate impacts
  • 2021
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 14:6, s. 3335-3359
  • Tidskriftsartikel (refereegranskat)abstract
    • Aerosol-cloud interactions contribute to a large portion of the spread in estimates of climate forcing, climate sensitivity and future projections. An important part of this uncertainty is how much new particle formation (NPF) contributes to cloud condensation nuclei (CCN) and, furthermore, how this changes with changes in anthropogenic emissions. Incorporating NPF and early growth in Earth system models (ESMs) is, however, challenging due to uncertain parameters (e.g. participating vapours), structural issues (numerical description of growth from ∼ 1 to ∼ 100 nm) and the large scale of an ESM grid compared to the NPF scale. A common approach in ESMs is to represent the particle size distribution by a certain number of log-normal modes. Sectional schemes, on the other hand, in which the size distribution is represented by bins, are considered closer to first principles because they do not make an a priori assumption about the size distribution. In order to improve the representation of early growth, we have implemented a sectional scheme for the smallest particles (5-39.6 nm diameter) in the Norwegian Earth System Model (NorESM), feeding particles into the original aerosol scheme. This is, to our knowledge, the first time such an approach has been tried. We find that including the sectional scheme for early growth improves the aerosol number concentration in the model when comparing against observations, particularly in the 50-100 nm diameter range. Furthermore, we find that the model with the sectional scheme produces much fewer particles than the original scheme in polluted regions, while it produces more in remote regions and the free troposphere, indicating a potential impact on the estimated aerosol forcing. Finally, we analyse the effect on cloud-aerosol interactions and find that the effect of changes in NPF efficiency on clouds is highly heterogeneous in space. While in remote regions, more efficient NPF leads to higher cloud droplet number concentration (CDNC), in polluted regions the opposite is in fact the case.
  •  
4.
  • Boy, Michael, et al. (författare)
  • Positive feedback mechanism between biogenic volatile organic compounds and the methane lifetime in future climates
  • 2022
  • Ingår i: npj Climate and Atmospheric Science. - : Springer Science and Business Media LLC. - 2397-3722. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A multitude of biogeochemical feedback mechanisms govern the climate sensitivity of Earth in response to radiation balance perturbations. One feedback mechanism, which remained missing from most current Earth System Models applied to predict future climate change in IPCC AR6, is the impact of higher temperatures on the emissions of biogenic volatile organic compounds (BVOCs), and their subsequent effects on the hydroxyl radical (OH) concentrations. OH, in turn, is the main sink term for many gaseous compounds including methane, which is the second most important human-influenced greenhouse gas in terms of climate forcing. In this study, we investigate the impact of this feedback mechanism by applying two models, a one-dimensional chemistry-transport model, and a global chemistry-transport model. The results indicate that in a 6 K temperature increase scenario, the BVOC-OH-CH4 feedback increases the lifetime of methane by 11.4% locally over the boreal region when the temperature rise only affects chemical reaction rates, and not both, chemistry and BVOC emissions. This would lead to a local increase in radiative forcing through methane (ΔRFCH4) of approximately 0.013 Wm−2 per year, which is 2.1% of the current ΔRFCH4. In the whole Northern hemisphere, we predict an increase in the concentration of methane by 0.024% per year comparing simulations with temperature increase only in the chemistry or temperature increase in chemistry and BVOC emissions. This equals approximately 7% of the annual growth rate of methane during the years 2008–2017 (6.6 ± 0.3 ppb yr−1) and leads to an ΔRFCH4 of 1.9 mWm−2 per year.
  •  
5.
  • Döscher, Ralf, et al. (författare)
  • The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6
  • 2022
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 15:7, s. 2973-3020
  • Tidskriftsartikel (refereegranskat)abstract
    • The Earth system model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different high-performance computing (HPC) systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behavior and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new Earth system model (ESM) components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
  •  
6.
  • Fanourgakis, George S., et al. (författare)
  • Evaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications for cloud droplet formation
  • 2019
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 19:13, s. 8591-8617
  • Tidskriftsartikel (refereegranskat)abstract
    • A total of 16 global chemistry transport models and general circulation models have participated in this study; 14 models have been evaluated with regard to their ability to reproduce the near-surface observed number concentration of aerosol particles and cloud condensation nuclei (CCN), as well as derived cloud droplet number concentration (CDNC). Model results for the period 2011-2015 are compared with aerosol measurements (aerosol particle number, CCN and aerosol particle composition in the submicron fraction) from nine surface stations located in Europe and Japan. The evaluation focuses on the ability of models to simulate the average across time state in diverse environments and on the seasonal and short-term variability in the aerosol properties. There is no single model that systematically performs best across all environments represented by the observations. Models tend to underestimate the observed aerosol particle and CCN number concentrations, with average normalized mean bias (NMB) of all models and for all stations, where data are available, of -24% and -35% for particles with dry diameters >50 and >120nm, as well as -36% and -34% for CCN at supersaturations of 0.2% and 1.0%, respectively. However, they seem to behave differently for particles activating at very low supersaturations (<0.1%) than at higher ones. A total of 15 models have been used to produce ensemble annual median distributions of relevant parameters. The model diversity (defined as the ratio of standard deviation to mean) is up to about 3 for simulated N3 (number concentration of particles with dry diameters larger than 3nm) and up to about 1 for simulated CCN in the extra-polar regions. A global mean reduction of a factor of about 2 is found in the model diversity for CCN at a supersaturation of 0.2% (CCN0.2) compared to that for N3, maximizing over regions where new particle formation is important. An additional model has been used to investigate potential causes of model diversity in CCN and bias compared to the observations by performing a perturbed parameter ensemble (PPE) accounting for uncertainties in 26 aerosol-related model input parameters. This PPE suggests that biogenic secondary organic aerosol formation and the hygroscopic properties of the organic material are likely to be the major sources of CCN uncertainty in summer, with dry deposition and cloud processing being dominant in winter. Models capture the relative amplitude of the seasonal variability of the aerosol particle number concentration for all studied particle sizes with available observations (dry diameters larger than 50, 80 and 120nm). The short-term persistence time (on the order of a few days) of CCN concentrations, which is a measure of aerosol dynamic behavior in the models, is underestimated on average by the models by 40% during winter and 20% in summer. In contrast to the large spread in simulated aerosol particle and CCN number concentrations, the CDNC derived from simulated CCN spectra is less diverse and in better agreement with CDNC estimates consistently derived from the observations (average NMB -13% and -22% for updraft velocities 0.3 and 0.6ms-1, respectively). In addition, simulated CDNC is in slightly better agreement with observationally derived values at lower than at higher updraft velocities (index of agreement 0.64 vs. 0.65). The reduced spread of CDNC compared to that of CCN is attributed to the sublinear response of CDNC to aerosol particle number variations and the negative correlation between the sensitivities of CDNC to aerosol particle number concentration (Nd=Na) and to updraft velocity (Nd=w). Overall, we find that while CCN is controlled by both aerosol particle number and composition, CDNC is sensitive to CCN at low and moderate CCN concentrations and to the updraft velocity when CCN levels are high. Discrepancies are found in sensitivities Nd=Na and Nd=w; models may be predisposed to be too "aerosol sensitive" or "aerosol insensitive" in aerosol-cloud-climate interaction studies, even if they may capture average droplet numbers well. This is a subtle but profound finding that only the sensitivities can clearly reveal and may explain intermodel biases on the aerosol indirect effect.
  •  
7.
  • Foreback, Benjamin, et al. (författare)
  • A new implementation of FLEXPART with Enviro-HIRLAM meteorological input, and a case study during a heavy air pollution event
  • 2024
  • Ingår i: big earth data. - 2096-4471.
  • Tidskriftsartikel (refereegranskat)abstract
    • We integrated Enviro-HIRLAM (Environment-High Resolution Limited Area Model) meteorological output into FLEXPART (FLEXible PARTicle dispersion model). A FLEXPART simulation requires meteorological input from a numerical weather prediction (NWP) model. The publicly available version of FLEXPART can utilize either ECMWF (European Centre for Medium-range Weather Forecasts) Integrated Forecast System (IFS) forecast or reanalysis NWP data, or NCEP (U.S. National Center for Environmental Prediction) Global Forecast System (GFS) forecast or reanalysis NWP data. The primary benefits of using Enviro-HIRLAM are that it runs at a higher resolution and accounts for aerosol effects in meteorological fields. We compared backward trajectories generated with FLEXPART using Enviro-HIRLAM (both with and without aerosol effects) to trajectories generated using NCEP GFS and ECMWF IFS meteorological inputs, for a case study of a heavy haze event which occurred in Beijing, China in November 2018. We found that results from FLEXPART were considerably different when using different meteorological inputs. When aerosol effects were included in the NWP, there was a small but noticeable difference in calculated trajectories. Moreover, when looking at potential emission sensitivity instead of simply expressing trajectories as lines, additional information, which may have been missed when looking only at trajectories as lines, can be inferred.
  •  
8.
  • Kirkevag, Alf, et al. (författare)
  • A production-tagged aerosol module for Earth system models, OsloAero5.3-extensions and updates for CAM5.3-Oslo
  • 2018
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 11:10, s. 3945-3982
  • Tidskriftsartikel (refereegranskat)abstract
    • We document model updates and present and discuss modeling and validation results from a further developed production-tagged aerosol module, OsloAero5.3, for use in Earth system models. The aerosol module has in this study been implemented and applied in CAM5.3-Oslo. This model is based on CAM5.3-CESM1.2 and its own predecessor model version CAM4-Oslo. OsloAero5.3 has improved treatment of emissions, aerosol chemistry, particle life cycle, and aerosol-cloud interactions compared to its predecessor OsloAero4.0 in CAM4-Oslo. The main new features consist of improved aerosol sources; the module now explicitly accounts for aerosol particle nucleation and secondary organic aerosol production, with new emissions schemes also for sea salt, dimethyl sulfide (DMS), and marine primary organics. Mineral dust emissions are updated as well, adopting the formulation of CESM1.2. The improved model representation of aerosol-cloud interactions now resolves heterogeneous ice nucleation based on black carbon (BC) and mineral dust calculated by the model and treats the activation of cloud condensation nuclei (CCN) as in CAM5.3. Compared to OsloAero4.0 in CAM4-Oslo, the black carbon (BC) mass concentrations are less excessive aloft, with a better fit to observations. Near-surface mass concentrations of BC and sea salt aerosols are also less biased, while sulfate and mineral dust are slightly more biased. Although appearing quite similar for CAM5.3-Oslo and CAM4-Oslo, the validation results for organic matter (OM) are inconclusive, since both of the respective versions of OsloAero are equipped with a limited number of OM tracers for the sake of computational efficiency. Any information about the assumed mass ratios of OM to organic carbon (OC) for different types of OM sources is lost in the transport module. Assuming that observed OC concentrations scaled by 1.4 are representative for the modeled OM concentrations, CAM5.3-Oslo with OsloAero5.3 is slightly inferior for the very sparsely available observation data. Comparing clear-sky column-integrated optical properties with data from ground-based remote sensing, we find a negative bias in optical depth globally; however, it is not as strong as in CAM4-Oslo, but has positive biases in some areas typically dominated by mineral dust emissions. Aerosol absorption has a larger negative bias than the optical depth globally. This is reflected in a lower positive bias in areas where mineral dust is the main contributor to absorption. Globally, the low bias in absorption is smaller than in CAM4-Oslo. The Angstrom parameter exhibits small biases both globally and regionally, suggesting that the aerosol particle sizes are reasonably well represented. Cloud-top droplet number concentrations over oceans are generally underestimated compared to satellite retrievals, but seem to be overestimated downwind of major emissions of dust and biomass burning sources. Finally, we find small changes in direct radiative forcing at the top of the atmosphere, while the cloud radiative forcing due to anthropogenic aerosols is now more negative than in CAM4-Oslo, being on the strong side compared to the multi-model estimate in IPCC AR5. Although not all validation results in this study show improvement for the present CAM5.3-Oslo version, the extended and updated aerosol module OsloAero5.3 is more advanced and applicable than its predecessor OsloAero4.0, as it includes new parameterizations that more readily facilitate sensitivity and process studies and use in climate and Earth system model studies in general.
  •  
9.
  • Kulmala, Markku, et al. (författare)
  • Opinion : The strength of long-term comprehensive observations to meet multiple grand challenges in different environments and in the atmosphere
  • 2023
  • Ingår i: Atmospheric Chemistry And Physics. - 1680-7316 .- 1680-7324. ; 23:23, s. 14949-14971
  • Tidskriftsartikel (refereegranskat)abstract
    • To be able to meet global grand challenges (climate change; biodiversity loss; environmental pollution; scarcity of water, food and energy supplies; acidification; deforestation; chemicalization; pandemics), which all are closely interlinked with each other, we need comprehensive open data with proper metadata, along with open science. The large data sets from ground-based in situ observations, ground and satellite remote sensing, and multiscale modeling need to be utilized seamlessly. In this opinion paper, we demonstrate the power of the SMEAR (Station for Measuring Earth surface-Atmosphere Relations) concept via several examples, such as detection of new particle formation and the particles' subsequent growth, quantifying atmosphere-ecosystem feedback loops, and combining comprehensive observations with emergency science and services, as well as studying the effect of COVID-19 restrictions on different air quality and climate variables. The future needs and the potential of comprehensive observations of the environment are summarized.
  •  
10.
  • Lapere, Rémy, et al. (författare)
  • The Representation of Sea Salt Aerosols and Their Role in Polar Climate Within CMIP6
  • 2023
  • Ingår i: Journal of Geophysical Research - Atmospheres. - 2169-897X .- 2169-8996. ; 128:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Natural aerosols and their interactions with clouds remain an important uncertainty within climate models, especially at the poles. Here, we study the behavior of sea salt aerosols (SSaer) in the Arctic and Antarctic within 12 climate models from CMIP6. We investigate the driving factors that control SSaer abundances and show large differences based on the choice of the source function, and the representation of aerosol processes in the atmosphere. Close to the poles, the CMIP6 models do not match observed seasonal cycles of surface concentrations, likely due to the absence of wintertime SSaer sources such as blowing snow. Further away from the poles, simulated concentrations have the correct seasonality, but have a positive mean bias of up to one order of magnitude. SSaer optical depth is derived from the MODIS data and compared to modeled values, revealing good agreement, except for winter months. Better agreement for aerosol optical depth than surface concentration may indicate a need for improving the vertical distribution, the size distribution and/or hygroscopicity of modeled polar SSaer. Source functions used in CMIP6 emit very different numbers of small SSaer, potentially exacerbating cloud-aerosol interaction uncertainties in these remote regions. For future climate scenarios SSP126 and SSP585, we show that SSaer concentrations increase at both poles at the end of the 21st century, with more than two times mid-20th century values in the Arctic. The pre-industrial climate CMIP6 experiments suggest there is a large uncertainty in the polar radiative budget due to SSaer.Plain Language Summary Aerosols emitted from the ocean, such as sea salt particles (aerosols), are critical for the climate of polar regions. However, there is still uncertainty in their representation in climate models. The purpose of this work is to evaluate the representation of sea salt aerosols (SSaer) in the Arctic and Antarctic in a recent model inter-comparison initiative, and to assess the consequences for our understanding of present-day and future polar climate. We find that the models disagree between them and with observations from ground stations and from space. This suggests that the formulation of sea salt emissions in global models is not adapted for polar regions. With sea ice retreat, SSaer will most likely increase in the future, which makes addressing the current uncertainty an important next step for the scientific community.
  •  
11.
  •  
12.
  • Stolzenburg, Dominik, et al. (författare)
  • Atmospheric nanoparticle growth
  • 2023
  • Ingår i: Reviews of Modern Physics. - 0034-6861 .- 1539-0756. ; 95:4
  • Forskningsöversikt (refereegranskat)abstract
    • New particle formation of liquid or solid nanoparticles from gas-phase precursors is a decisive process in Earth’s atmosphere and is considered one of the largest uncertainties in climate change predictions. Key for the climate relevance of new particle formation is the growth of freshly formed molecular clusters, as it determines the survival of these particles to cloud condensation nuclei sizes, where they can contribute to the aerosol-indirect effect. This review lays out the fundamental definitions of nanoparticle growth and addresses the rapidly emerging field of new particle formation studies with a focus on the diverse processes contributing to nanoparticle growth, explicitly comparing the latest experimental findings and their implementation in large-scale models. Atmospheric nanoparticle growth is a complex phenomenon including condensational and reactive vapor uptake, aerosol coagulation, and sink processes. It is linked to thermodynamics, cluster- and phase-transition physics. Nanoparticle growth rates measured from the evolution of the particle-size distribution describe growth as a collective phenomenon, while models often interpret them on a single-particle level and incorporate it into highly simplified size-distribution representations. Recent atmospheric observations show that sulfuric acid together with ammonia and amines, iodic acid, and oxidized organic species can contribute to nanoparticle growth, whereas most models describe the growth effects from a limited subset of this variety of condensable vapors. Atmospheric simulation chamber experiments have clarified the role of ions, intermolecular forces, the interplay of acids and bases, and the contribution of different types of organic vapors. Especially in the complex thermodynamics of organic vapor condensation, the field has had noteworthy advances over the last decade. While the experimental field has achieved significant progress in methodology and process level understanding, this has not led to a similar improvement in the description of the climate impact of nanoparticle formation in large-scale models. This review sets the basis to better align experimental and modeling studies on nanoparticle growth, giving specific guidance for future studies aiming to resolve the questions as to why the climate response in large-scale models seems to be buffered against high survival probabilities and why the global growth observations herein show surprisingly low variation.
  •  
13.
  • Tang, Jing, et al. (författare)
  • High-latitude vegetation changes will determine future plant volatile impacts on atmospheric organic aerosols
  • 2023
  • Ingår i: npj Climate and Atmospheric Science. - 2397-3722. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Strong, ongoing high-latitude warming is causing changes to vegetation composition and plant productivity, modifying plant emissions of biogenic volatile organic compounds (BVOCs). In the sparsely populated high latitudes with clean background air, climate feedback resulting from BVOCs as precursors of atmospheric aerosols could be more important than elsewhere on the globe. Here, we quantitatively assess changes in vegetation composition, BVOC emissions, and secondary organic aerosol (SOA) formation under different climate scenarios. We show that warming-induced vegetation changes largely determine the spatial patterns of future BVOC impacts on SOA. The northward advances of boreal needle-leaved woody species result in increased SOA optical depth by up to 41%, causing cooling feedback. However, areas with temperate broad-leaved trees replacing boreal needle-leaved trees likely experience a large decline in monoterpene emissions and SOA formation, causing warming feedback. We highlight the necessity of considering warming-induced vegetation shifts when assessing land radiative feedback on climate following the BVOC-SOA pathway.
  •  
14.
  • Van Noije, Twan, et al. (författare)
  • EC-Earth3-AerChem : A global climate model with interactive aerosols and atmospheric chemistry participating in CMIP6
  • 2021
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 14:9, s. 5637-5668
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper documents the global climate model EC-Earth3-AerChem, one of the members of the EC-Earth3 family of models participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6). EC-Earth3-AerChem has interactive aerosols and atmospheric chemistry and contributes to the Aerosols and Chemistry Model Intercomparison Project (AerChemMIP). In this paper, we give an overview of the model, describe in detail how it differs from the other EC-Earth3 configurations, and outline the new features compared with the previously documented version of the model (EC-Earth 2.4). We explain how the model was tuned and spun up under preindustrial conditions and characterize the model's general performance on the basis of a selection of coupled simulations conducted for CMIP6. The net energy imbalance at the top of the atmosphere in the preindustrial control simulation is on average -0.09 W m-2 with a standard deviation due to interannual variability of 0.25 W m-2, showing no significant drift. The global surface air temperature in the simulation is on average 14.08 ∼ C with an interannual standard deviation of 0.17 ∼ C, exhibiting a small drift of 0.015 ± 0.005 ∼ C per century. The model's effective equilibrium climate sensitivity is estimated at 3.9 ∼ C, and its transient climate response is estimated at 2.1 ∼ C. The CMIP6 historical simulation displays spurious interdecadal variability in Northern Hemisphere temperatures, resulting in a large spread across ensemble members and a tendency to underestimate observed annual surface temperature anomalies from the early 20th century onwards. The observed warming of the Southern Hemisphere is well reproduced by the model. Compared with the ECMWF (European Centre for Medium-Range Weather Forecasts) Reanalysis version 5 (ERA5), the surface air temperature climatology for 1995-2014 has an average bias of -0.86 ± 0.05 ∼ C with a standard deviation across ensemble members of 0.35 ∼ C in the Northern Hemisphere and 1.29 ± 0.02 ∼ C with a corresponding standard deviation of 0.05 ∼ C in the Southern Hemisphere. The Southern Hemisphere warm bias is largely caused by errors in shortwave cloud radiative effects over the Southern Ocean, a deficiency of many climate models. Changes in the emissions of near-term climate forcers (NTCFs) have significant effects on the global climate from the second half of the 20th century onwards. For the SSP3-7.0 Shared Socioeconomic Pathway, the model gives a global warming at the end of the 21st century (2091-2100) of 4.9 ∼ C above the preindustrial mean. A 0.5 ∼ C stronger warming is obtained for the AerChemMIP scenario with reduced emissions of NTCFs. With concurrent reductions of future methane concentrations, the warming is projected to be reduced by 0.5 ∼ C.
  •  
15.
  • Zhou, Putian, et al. (författare)
  • Simulating dust emissions and secondary organic aerosol formation over northern Africa during the mid-Holocene Green Sahara period
  • 2023
  • Ingår i: Climate of the Past. - 1814-9324 .- 1814-9332. ; 19:12, s. 2445-2462
  • Tidskriftsartikel (refereegranskat)abstract
    • Paleo-proxy data indicate that a “Green Sahara” thrived in northern Africa during the early- to mid-Holocene (MH; 11 000 to 5000 years before present), characterized by more vegetation cover and reduced dust emissions. Utilizing a state-of-the-art atmospheric chemical transport model, TM5-MP, we assessed the changes in biogenic volatile organic compound (BVOC) emissions, dust emissions and secondary organic aerosol (SOA) concentrations in northern Africa during this period relative to the pre-industrial (PI) period. Our simulations show that dust emissions reduced from 280.6 Tg a−1 in the PI to 26.8 Tg a−1 in the MH, agreeing with indications from eight marine sediment records in the Atlantic Ocean. The northward expansion in northern Africa resulted in an increase in annual emissions of isoprene and monoterpenes during the MH, around 4.3 and 3.5 times higher than that in the PI period, respectively, causing a 1.9-times increase in the SOA surface concentration. Concurrently, enhanced BVOC emissions consumed more hydroxyl radical (OH), resulting in less sulfate formation. This effect counteracted the enhanced SOA surface concentration, altogether leading to a 17 % increase in the cloud condensation nuclei at 0.2 % super saturation over northern Africa. Our simulations provide consistent emission datasets of BVOCs, dust and the SOA formation aligned with the northward shift of vegetation during the “Green Sahara” period, which could serve as a benchmark for MH aerosol input in future Earth system model simulation experiments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-15 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy