SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mandel Ronald J.) "

Sökning: WFRF:(Mandel Ronald J.)

  • Resultat 1-16 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mandel, Ronald J, et al. (författare)
  • Novel oligodendroglial alpha synuclein viral vector models of multiple system atrophy : studies in rodents and nonhuman primates
  • 2017
  • Ingår i: Acta Neuropathologica Communications. - : Springer Science and Business Media LLC. - 2051-5960. ; 5:1, s. 47-47
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiple system atrophy (MSA) is a horrible and unrelenting neurodegenerative disorder with an uncertain etiology and pathophysiology. MSA is a unique proteinopathy in which alpha-synuclein (α-syn) accumulates preferentially in oligodendroglia rather than neurons. Glial cytoplasmic inclusions (GCIs) of α-syn are thought to elicit changes in oligodendrocyte function, such as reduced neurotrophic support and demyelination, leading to neurodegeneration. To date, only a murine model using one of three promoters exist to study this disease. We sought to develop novel rat and nonhuman primate (NHP) models of MSA by overexpressing α-syn in oligodendroglia using a novel oligotrophic adeno-associated virus (AAV) vector, Olig001. To establish tropism, rats received intrastriatal injections of Olig001 expressing GFP. Histological analysis showed widespread expression of GFP throughout the striatum and corpus callosum with >95% of GFP+ cells co-localizing with oligodendroglia and little to no expression in neurons or astrocytes. We next tested the efficacy of this vector in rhesus macaques with intrastriatal injections of Olig001 expressing GFP. As in rats, we observed a large number of GFP+ cells in gray matter and white matter tracts of the striatum and the corpus callosum, with 90-94% of GFP+ cells co-localizing with an oligodendroglial marker. To evaluate the potential of our vector to elicit MSA-like pathology in NHPs, we injected rhesus macaques intrastriatally with Olig001 expressing the α-syn transgene. Histological analysis 3-months after injection demonstrated widespread α-syn expression throughout the striatum as determined by LB509 and phosphorylated serine-129 α-syn immunoreactivity, all of which displayed as tropism similar to that seen with GFP. As in MSA, Olig001-α-syn GCIs in our model were resistant to proteinase K digestion and caused microglial activation. Critically, demyelination was observed in the white matter tracts of the corpus callosum and striatum of Olig001-α-syn but not Olig001-GFP injected animals, similar to the human disease. These data support the concept that this vector can provide novel rodent and nonhuman primate models of MSA.
  •  
2.
  • Andsberg, Gunnar, et al. (författare)
  • Neuropathological and behavioral consequences of adeno-associated viral vector-mediated continuous intrastriatal neurotrophin delivery in a focal ischemia model in rats.
  • 2002
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 9:2, s. 187-204
  • Tidskriftsartikel (refereegranskat)abstract
    • Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) were continuously delivered to the striatum at biologically active levels via recombinant adeno-associated viral (rAAV) gene transfer 4-5 weeks prior to 30 min of middle cerebral artery occlusion (MCAO). The magnitude of the deficits in a battery of behavioral tests designed to assess striatal function was highly correlated to the extent of ischemic damage determined by unbiased stereological estimations of striatal neuron numbers. The delivery of neurotrophins lead to mild functional improvements in the ischemia-induced motor impairments assessed 3-5 weeks after the insult, in agreement with a small but significant increase of the survival of dorsolateral striatal neurons. Detailed phenotypic analysis demonstrated that the parvalbumin-containing interneurons were spared to a greater extent by the neurotrophin treatment as compared to the projection neurons, which agreed with the specificity for interneuron transduction by the rAAV vector. These data show the advantage of the never previously performed combination of precise quantification of the ischemia-induced neuropathology along with detailed behavioural analysis for assessing neuroprotection after stroke. We observe that intrastriatal delivery of NGF and BDNF using a viral vector system can mitigate, albeit only moderately, neuronal death following stroke, which leads to detectable functional sparing. (c)2002 Elsevier Science (USA).
  •  
3.
  •  
4.
  •  
5.
  • Björklund, Tomas, et al. (författare)
  • Optimization of continuous in vivo DOPA production and studies on ectopic DA synthesis using rAAV5 vectors in Parkinsonian rats
  • 2009
  • Ingår i: Journal of Neurochemistry. - : Wiley. - 1471-4159 .- 0022-3042. ; 111:2, s. 355-367
  • Tidskriftsartikel (refereegranskat)abstract
    • Viral vector-mediated gene transfer is emerging as a novel therapeutic approach with clinical utility in treatment of Parkinson's disease. Recombinant adeno-associated viral (rAAV) vector in particular has been utilized for continuous l-3,4 dihydroxyphenylalanine (DOPA) delivery by expressing the tyrosine hydroxylase (TH) and GTP cyclohydrolase 1 (GCH1) genes which are necessary and sufficient for efficient synthesis of DOPA from dietary tyrosine. The present study was designed to determine the optimal stoichiometric relationship between TH and GCH1 genes for ectopic DOPA production and the cellular machinery involved in its synthesis, storage, and metabolism. For this purpose, we injected a fixed amount of rAAV5-TH vector and increasing amounts of rAAV5-GCH1 into the striatum of rats with complete unilateral dopamine lesion. After 7 weeks the animals were killed for either biochemical or histological analysis. We show that increasing the availability of 5,6,7,8-tetrahydro-l-biopterin (BH4) in the same cellular compartment as the TH enzyme resulted in better efficiency in DOPA synthesis, most likely by hindering inactivation of the enzyme and increasing its stability. Importantly, the BH4 synthesis from ectopic GCH1 expression was saturable, yielding optimal TH enzyme functionality between GCH1 : TH ratios of 1 : 3 and 1 : 7.
  •  
6.
  • Carlsson, Thomas, et al. (författare)
  • Reversal of dyskinesias in an animal model of Parkinson's disease by continuous L-DOPA delivery using rAAV vectors.
  • 2005
  • Ingår i: Brain. - : Oxford University Press (OUP). - 1460-2156. ; 128:3, s. 559-569
  • Tidskriftsartikel (refereegranskat)abstract
    • Dyskinesias are a major complication of long-term l-3,4-dihydroxyphenylalanine (L-DOPA) treatment in Parkinson's disease, and are believed to result from the intermittent and pulsatile supply of L-DOPA. Daily injections of L-DOPA can prime similar abnormal involuntary movements of the limb, orolingual and axial muscles in rats rendered parkinsonian by destruction of the nigrostriatal dopamine (DA) neurons. In this study we used 33 rats with severe nigrostriatal dopamine depletion and showed that in vivo gene transfer of the DA-synthetic enzymes tyrosine hydroxylase (TH) and GTP cyclohydrolase 1 (GCH1) using recombinant adeno-associated virus vectors can provide a constant source of DOPA production locally in the striatum, at a level that is effective in reducing L-DOPA-induced dyskinesias by >85%, and reverse lesion-induced motor impairments. Furthermore, the abnormal expression of DeltaFosB, prodynorphin and preproenkephalin mRNA within the striatal projection neurons normally seen in dyskinetic animals was completely reversed by TH-GCH1 gene transfer. These findings form a strong basis for replacing, or supplementing, conventional systemic L-DOPA therapy by continuous intrastriatal DOPA using in vivo gene transfer in the treatment of patients with advanced Parkinson's disease.
  •  
7.
  • de Jong, Roelof S., et al. (författare)
  • 4MOST-4-metre Multi-Object Spectroscopic Telescope
  • 2014
  • Ingår i: Ground-based and Airborne Instrumentation for Astronomy V. - : SPIE. - 0277-786X .- 1996-756X. ; 9147
  • Konferensbidrag (refereegranskat)abstract
    • 4MOST is a wide-field, high-multiplex spectroscopic survey facility under development for the VISTA telescope of the European Southern Observatory (ESO). Its main science drivers are in the fields of galactic archeology, high-energy physics, galaxy evolution and cosmology. 4MOST will in particular provide the spectroscopic complements to the large area surveys coming from space missions like Gaia, eROSITA, Euclid, and PLATO and from ground-based facilities like VISTA, VST, DES, LSST and SKA. The 4MOST baseline concept features a 2.5 degree diameter field-of-view with similar to 2400 fibres in the focal surface that are configured by a fibre positioner based on the tilting spine principle. The fibres feed two types of spectrographs; similar to 1600 fibres go to two spectrographs with resolution R> 5000 (lambda similar to 390-930 nm) and similar to 800 fibres to a spectrograph with R> 18,000 (lambda similar to 392-437 nm & 515-572 nm & 605-675 nm). Both types of spectrographs are fixed-configuration, three-channel spectrographs. 4MOST will have an unique operations concept in which 5 year public surveys from both the consortium and the ESO community will be combined and observed in parallel during each exposure, resulting in more than 25 million spectra of targets spread over a large fraction of the southern sky. The 4MOST Facility Simulator (4FS) was developed to demonstrate the feasibility of this observing concept. 4MOST has been accepted for implementation by ESO with operations expected to start by the end of 2020. This paper provides a top-level overview of the 4MOST facility, while other papers in these proceedings provide more detailed descriptions of the instrument concept[1], the instrument requirements development[2], the systems engineering implementation[3], the instrument model[4], the fibre positioner concepts[5], the fibre feed[6], and the spectrographs[7].
  •  
8.
  • Dodiya, Hemraj B., et al. (författare)
  • Differential Transduction Following Basal Ganglia Administration of Distinct Pseudotyped AAV Capsid Serotypes in Nonhuman Primates
  • 2010
  • Ingår i: Molecular Therapy. - : Elsevier BV. - 1525-0024 .- 1525-0016. ; 18:3, s. 579-587
  • Tidskriftsartikel (refereegranskat)abstract
    • We examined the transduction efficiency of different adeno-associated virus (AAV) capsid serotypes encoding for green fluorescent protein (GFP) flanked by AAV2 inverted terminal repeats in the nonhuman primate basal ganglia as a prelude to translational studies, as well as clinical trials in patients with Parkinson's disease (PD). Six intact young adult cynomolgus monkeys received a single 10 mu l injection of AAV2/1-GFP, AAV2/5-GFP, or AAV2/8-GFP pseudotyped vectors into the caudate nucleus and putamen bilaterally in a pattern that resulted in each capsid serotype being injected into at least four striatal sites. GFP immunohistochemistry revealed excellent transduction rates for each AAV pseudotype. Stereological estimates of GFP(+) cells within the striatum revealed that AAV2/5-GFP transduces significantly higher number of cells than AAV2/8-GFP (P < 0.05) and there was no significant difference between AAV2/5-GFP and AAV2/1-GFP (P = 0.348). Consistent with this result, Cavalieri estimates revealed that AAV2/5-GFP resulted in a significantly larger transduction volume than AAV2/8-GFP (P < 0.05). Each pseudotype transduced striatal neurons effectively [>95% GFP(+) cells colocalized neuron-specific nuclear protein (NeuN)]. The current data suggest that AAV2/5 and AAV2/1 are superior to AAV2/8 for gene delivery to the nonhuman primate striatum and therefore better candidates for therapeutic applications targeting this structure.
  •  
9.
  • Englund, Ulrica, et al. (författare)
  • The use of a recombinant lentiviral vector for ex vivo gene transfer into the rat CNS
  • 2000
  • Ingår i: NeuroReport. - : Lippincott Williams & Wilkins. - 0959-4965 .- 1473-558X. ; 11:18, s. 3973-3977
  • Tidskriftsartikel (refereegranskat)abstract
    • A major obstacle in ex vivo gene transfer has been the loss of transgene expression soon after implantation of the grafted transduced cells. Recently, a lentiviral vector system has been developed which has proven to express high levels of transgenes in vivo after direct injection into the tissue. In this study, we have investigated the use of such a vector for ex vivo gene transfer to the brain. A number of neural cell types were found to be permissive to transduction by the lentiviral vector in vitro and a majority of them expressed the transgene after transplantation to the rat brain. Transgene expression was detected up to 8 weeks post-grafting. These findings suggest that recombinant lentiviral vectors may be used for further development of ex vivo gene therapy protocols to the CNS.
  •  
10.
  • Eslamboli, Andisheh, et al. (författare)
  • Long-term consequences of human alpha-synuclein overexpression in the primate ventral midbrain.
  • 2007
  • Ingår i: Brain. - : Oxford University Press (OUP). - 1460-2156 .- 0006-8950. ; 130:3, s. 799-815
  • Tidskriftsartikel (refereegranskat)abstract
    • Overexpression of human alpha-synuclein (alpha-syn) using recombinant adeno-associated viral (rAAV) vectors provides a novel tool to study neurodegenerative processes seen in Parkinson's disease and other synucleinopathies. We used a pseudotyped rAAV2/5 vector to express human wild-type (wt) alpha-syn, A53T mutated alpha-syn, or the green fluorescent protein (GFP) in the primate ventral midbrain. Twenty-four adult common marmosets (Callithrix jacchus) were followed with regular behavioural tests for 1 year after transduction. alpha-Syn overexpression affected motor behaviour such that all animals remained asymptomatic for at least 9 weeks, then motor bias comprising head position bias and full body rotations were seen in wt-alpha-syn expressing animals between 15 and 27 weeks; in the later phase, the animals overexpressing the A53T alpha -syn, in particular, showed a gradual worsening of motor performance, with increased motor coordination errors. Histological analysis from animals overexpressing either the wt or A53T alpha -syn showed prominent degeneration of dopaminergic fibres in the striatum. In the ventral midbrain, however, the dopaminergic neurodegeneration was more prominent in the A53T group than in the WT group suggesting differential toxicity of these two proteins in the primate brain. The surviving cell bodies and their processes in the substantia nigra were stained by antibodies to the pathological form of alpha-syn that is phosphorylated at Ser position 129. Moreover, we found, for the first time, ubiquitin containing aggregates after overexpression of alpha-syn in the primate midbrain. There was also a variable loss of oligodendroglial cells in the cerebral peduncle. These histological and behavioural data suggest that this model provides unique opportunities to study progressive neurodegeneration in the dopaminergic system and deposition of alpha-syn and ubiquitin similar to that seen in Parkinson's disease, and to test novel therapeutic targets for neuroprotective strategies.
  •  
11.
  • Gustafsson, Elin, et al. (författare)
  • Anterograde delivery of brain-derived neurotrophic factor to striatum via nigral transduction of recombinant adeno-associated virus increases neuronal death but promotes neurogenic response following stroke.
  • 2003
  • Ingår i: European Journal of Neuroscience. - : Wiley. - 1460-9568 .- 0953-816X. ; 17:12, s. 2667-2678
  • Tidskriftsartikel (refereegranskat)abstract
    • o explore the role of brain-derived neurotrophic factor for survival and generation of striatal neurons after stroke, recombinant adeno-associated viral vectors carrying brain-derived neurotrophic factor or green fluorescent protein genes were injected into right rat substantia nigra 4–5 weeks prior to 30 min ipsilateral of middle cerebral artery occlusion. The brain-derived neurotrophic factor–recombinant adeno-associated viral transduction markedly increased the production of brain-derived neurotrophic factor protein by nigral cells. Brain-derived neurotrophic factor was transported anterogradely to the striatum and released in biologically active form, as revealed by the hypertrophic response of striatal neuropeptide Y-positive interneurons. Animals transduced with brain-derived neurotrophic factor-recombinant adeno-associated virus also exhibited abnormalities in body posture and movements, including tilted body to the right, choreiform movements of left forelimb and head, and spontaneous, so-called 'barrel' rotation along their long axis. The continuous delivery of brain-derived neurotrophic factor had no effect on the survival of striatal projection neurons after stroke, but exaggerated the loss of cholinergic, and parvalbumin- and neuropeptide Y-positive, γ-aminobutyric acid-ergic interneurons. The high brain-derived neurotrophic factor levels in the animals subjected to stroke also gave rise to an increased number of striatal cells expressing doublecortin, a marker for migrating neuroblasts, and cells double-labelled with the mitotic marker, 5-bromo-2'-deoxyuridine-5'monophosphate, and early neuronal (Hu) or striatal neuronal (Meis2) markers. Our findings indicate that long-term anterograde delivery of high levels of brain-derived neurotrophic factor increases the vulnerability of striatal interneurons to stroke-induced damage. Concomitantly, brain-derived neurotrophic factor potentiates the stroke-induced neurogenic response, at least at early stages.
  •  
12.
  • Kirik, Deniz, et al. (författare)
  • Long-term rAAV-mediated gene transfer of GDNF in the rat Parkinson's model: intrastriatal but not intranigral transduction promotes functional regeneration in the lesioned nigrostriatal system
  • 2000
  • Ingår i: The Journal of Neuroscience. - 1529-2401. ; 20:12, s. 4686-4700
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous studies have used recombinant adeno-associated viral (rAAV) vectors to deliver glial cell line-derived neurotrophic factor (GDNF) in the substantia nigra to protect the nigral dopamine (DA) neurons from 6-hydroxydopamine-induced damage. However, no regeneration or functional recovery was observed in these experiments. Here, we have used an rAAV-GDNF vector to express GDNF long-term (6 months) in either the nigral DA neurons themselves, in the striatal target cells, or in both of these structures. The results demonstrate that both nigral and striatal transduction provide significant protection of nigral DA neurons against the toxin-induced degeneration. However, only the rats receiving rAAV-GDNF in the striatum displayed behavioral recovery, accompanied by significant reinnervation of the lesioned striatum, which developed gradually over the first 4-5 months after the lesion. GDNF transgene expression was maintained at high levels throughout this period. These results provide evidence that rAAV is a highly efficient vector system for long-term expression of therapeutic proteins in the nigrostriatal system.
  •  
13.
  • Kirik, Deniz, et al. (författare)
  • Nigrostriatal {alpha}-synucleinopathy induced by viral vector-mediated overexpression of human {alpha}-synuclein: A new primate model of Parkinson's disease.
  • 2003
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 100:5, s. 2884-2889
  • Tidskriftsartikel (refereegranskat)abstract
    • We used a high-titer recombinant adeno-associated virus (rAAV) vector to express WT or mutant human alpha -synuclein in the substantia nigra of adult marmosets. The alpha -synuclein protein was expressed in 90-95% of all nigral dopamine neurons and distributed by anterograde transport throughout their axonal and dendritic projections. The transduced neurons developed severe neuronal pathology, including alpha -synuclein-positive cytoplasmic inclusions and granular deposits; swollen, dystrophic, and fragmented neuritis; and shrunken and pyknotic, densely alpha -synuclein-positive perikarya. By 16 wk posttransduction, 30-60% of the tyrosine hydroxylase-positive neurons were lost, and the tyrosine hydroxylase-positive innervation of the caudate nucleus and putamen was reduced to a similar extent. The rAAV-alpha -synuclein-treated monkeys developed a type of motor impairment, i.e., head position bias, compatible with this magnitude of nigrostriatal damage. rAAV vector-mediated alpha -synuclein gene transfer provides a transgenic primate model of nigrostriatal alpha -synucleinopathy that is of particular interest because it develops slowly over time, like human Parkinson's disease (PD), and expresses neuropathological features (alpha -synuclein-positive inclusions and dystrophic neurites, in particular) that are similar to those seen in idiopathic PD. This model offers new opportunities for the study of pathogenetic mechanisms and exploration of new therapeutic targets of particular relevance to human PD.
  •  
14.
  • Kirik, Deniz, et al. (författare)
  • Reversal of motor impairments in parkinsonian rats by continuous intrastriatal delivery of L-dopa using rAAV-mediated gene transfer.
  • 2002
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 99:7, s. 4708-4713
  • Tidskriftsartikel (refereegranskat)abstract
    • Intrastriatal delivery of the tyrosine hydroxylase gene by viral vectors is being explored as a tool for local delivery of L-dopa in animals with lesions of the nigrostriatal pathway. The functional effects reported using this approach have been disappointing, probably because the striatal L-dopa levels attained have been too low. In the present study, we have defined a critical threshold level of L-dopa, 1.5 pmol/mg of tissue, that has to be reached to induce any significant functional effects. Using new generation high-titer recombinant adeno-associated virus vectors, we show that levels of striatal L-dopa production exceeding this threshold can be obtained provided that tyrosine hydroxylase is coexpressed with the cofactor synthetic enzyme, GTP-cyclohydrolase-1. After striatal transduction with this combination of vectors, substantial functional improvement in both drug-induced and spontaneous behavior was observed in rats with either complete or partial 6-hydroxydopamine lesions of the nigrostriatal pathway. However, complete reversal of motor deficits occurred only in animals in which part of the striatal dopamine innervation was left intact. Spared nigrostriatal fibers thus may convert L-dopa to dopamine and store and release dopamine in a more physiologically relevant manner in the denervated striatum to mediate better striatal output-dependent motor function. We conclude that intrastriatal L-dopa delivery may be a viable strategy for treatment and control of adverse side effects associated with oral L-dopa therapy such as on-off fluctuations and drug-induced dyskinesias in patients with Parkinson's disease.
  •  
15.
  • Leriche, Ludovic, et al. (författare)
  • Positron Emission Tomography Imaging Demonstrates Correlation between Behavioral Recovery and Correction of Dopamine Neurotransmission after Gene Therapy
  • 2009
  • Ingår i: The Journal of Neuroscience. - 1529-2401. ; 29:5, s. 1544-1553
  • Tidskriftsartikel (refereegranskat)abstract
    • In vivo gene transfer using viral vectors is an emerging therapy for neurodegenerative diseases with a clinical impact recently demonstrated in Parkinson's disease patients. Recombinant adeno-associated viral (rAAV) vectors, in particular, provide an excellent tool for long-term expression of therapeutic genes in the brain. Here we used the [C-11] raclopride [(S)-(-)-3,5-dichloro-N-((1-ethyl-2-pyrrolidinyl) methyl)-2-hydroxy6-methoxybenzamide] micro-positron emission tomography (PET) technique to demonstrate that delivery of the tyrosine hydroxylase (TH) andGTPcyclohydrolase 1 (GCH1) enzymes using an rAAV5 vector normalizes the increased [C-11] raclopride binding in hemiparkinsonian rats. Importantly, we show in vivo by microPET imaging and postmortem by classical binding assays performed in the very same animals that the changes in [C-11] raclopride after viral vector-based enzyme replacement therapy is attributable to a decrease in the affinity of the tracer binding to the D-2 receptors, providing evidence for reconstitution of a functional pool of endogenous dopamine in the striatum. Moreover, the extent of the normalization in this non-invasive imaging measure was highly correlated with the functional recovery in motor behavior. The PET imaging protocol used in this study is fully adaptable to humans and thus can serve as an in vivo imaging technique to follow TH + GCH1 gene therapy in PD patientsandprovideanadditionalobjectivemeasuretoapotentialclinicaltrialu singrAAVvectorstodeliverL-3,4-dihydroxyphenylanalineinthebrain.
  •  
16.
  • Mandel, Ronald J., et al. (författare)
  • The Importance of Graft Placement and Task Complexity for Transplant-Induced Recovery of Simple and Complex Sensorimotor Deficits in Dopamine Denervated Rats
  • 1990
  • Ingår i: European Journal of Neuroscience. - : Wiley. - 1460-9568 .- 0953-816X. ; 2:10, s. 888-894
  • Tidskriftsartikel (refereegranskat)abstract
    • The present study examined the role of graft placement and behavioural task complexity in determining the functional efficacy of intrastriatal grafts of dopamine-rich fetal ventral mesencephalon (VM) placed in the dopamine (DA) depleted striatum. The functional effects of two different striatal placements of VM grafts were evaluated using tests of drug-induced motor asymmetry, simple sensorimotor orienting response, and a more complex sensorimotor integrative task (disengage behaviour), in which the rat has to perform the orienting response while in the act of eating. Rats with complete unilateral 6-hydroxydopamine (6-OHDA) lesions of the mesostriatal DA pathway, received either implants of dissociated fetal VM in the central or ventrolateral portions of the denervated striatum. Nongrafted lesioned rats served as controls. Nine weeks after grafting, the rats were tested on separate days for disengage behaviour, sensorimotor orientation, and amphetamine-induced rotational behaviour. Consistent with previous findings, the two graft placements had differential effects on drug-induced motor asymmetry and sensorimotor responses: the centrally placed VM grafts reversed amphetamine-induced rotational asymmetry but had little effect on the sensorimotor deficit, whereas the ventrolaterally placed grafts reversed the sensorimotor orientation deficits without any effect on the drug-induced rotation. In contrast, fetal VM grafts, regardless of their placement, did not ameliorate the observed deficits in disengage behaviour; that is the grafted rats that had recovered their sensorimotor response in the absence of food were unable to perform the same orienting response while eating. These results provide evidence that functional intrastriatal VM grafts which are capable of restoring sensorimotor responses or motor asymmetry fail to affect lesion-induced deficits in a task that requires more complex sensorimotor integration. It is suggested that the degree of anatomical integration of the grafted DA neurons into the host circuitry will determine the efficacy of the grafts to influence more complex sensorimotor integrative deficits in the DA lesion model.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-16 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy