SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mandelker Nir) "

Sökning: WFRF:(Mandelker Nir)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fudamoto, Yoshinobu, et al. (författare)
  • The Extended [C II] under Construction? : Observation of the Brightest High-z Lensed Star-forming Galaxy at z=6.2
  • 2024
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 961:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present results of [C ii] 158 μm emission line observations, and report the spectroscopic redshift confirmation of a strongly lensed (μ ∼ 20) star-forming galaxy, MACS0308-zD1 at z = 6.2078 ± 0.0002. The [C ii] emission line is detected with a signal-to-noise ratio >6 within the rest-frame UV-bright clump of the lensed galaxy (zD1.1) and exhibits multiple velocity components; the narrow [C ii] has a velocity full width half maximum (FWHM) of 110 ± 20 km s−1, while broader [C ii] is seen with an FWHM of 230 ± 50 km s−1. The broader [C ii] component is blueshifted (−80 ± 20 km s−1) with respect to the narrow [C ii] component, and has a morphology that extends beyond the UV-bright clump. We find that, while the narrow [C ii] emission is most likely associated with zD1.1, the broader component is possibly associated with a physically distinct gas component from zD1.1 (e.g., outflowing or inflowing gas). Based on the nondetection of λ158μm dust continuum, we find that MACS0308-zD1's star formation activity occurs in a dust-free environment indicated by a strong upper limit of infrared luminosity ≲9 × 108L⊙. Targeting this strongly lensed faint galaxy for follow-up Atacama Large Millimeter/submillimeter Array and JWST observations will be crucial to characterize the details of typical galaxy growth in the early Universe.
  •  
2.
  • Kim, Ji Hoon, et al. (författare)
  • THE AGORA HIGH-RESOLUTION GALAXY SIMULATIONS COMPARISON PROJECT. II. ISOLATED DISK TEST
  • 2016
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 833:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Using an isolated Milky Way-mass galaxy simulation, we compare results from nine state-of-the-art gravito-hydrodynamics codes widely used in the numerical community. We utilize the infrastructure we have built for the AGORA High-resolution Galaxy Simulations Comparison Project. This includes the common disk initial conditions, common physics models (e.g., radiative cooling and UV background by the standardized package Grackle) and common analysis toolkit yt, all of which are publicly available. Subgrid physics models such as Jeans pressure floor, star formation, supernova feedback energy, and metal production are carefully constrained across code platforms. With numerical accuracy that resolves the disk scale height, we find that the codes overall agree well with one another in many dimensions including: gas and stellar surface densities, rotation curves, velocity dispersions, density and temperature distribution functions, disk vertical heights, stellar clumps, star formation rates, and Kennicutt-Schmidt relations. Quantities such as velocity dispersions are very robust (agreement within a few tens of percent at all radii) while measures like newly formed stellar clump mass functions show more significant variation (difference by up to a factor of ∼3). Systematic differences exist, for example, between mesh-based and particle-based codes in the low-density region, and between more diffusive and less diffusive schemes in the high-density tail of the density distribution. Yet intrinsic code differences are generally small compared to the variations in numerical implementations of the common subgrid physics such as supernova feedback. Our experiment reassures that, if adequately designed in accordance with our proposed common parameters, results of a modern high-resolution galaxy formation simulation are more sensitive to input physics than to intrinsic differences in numerical schemes.
  •  
3.
  • Martin, Alec, et al. (författare)
  • UV-bright Star-forming Clumps and Their Host Galaxies in UVCANDELS at 0.5 ≤ z ≤ 1
  • 2023
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 955:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Giant star-forming clumps are a prominent feature of star-forming galaxies (SFGs) and contain important clues on galaxy formation and evolution. However, the basic demographics of clumps and their host galaxies remain uncertain. Using the Hubble Space Telescope/Wide Field Camera 3 F275W images from the Ultraviolet Imaging of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, we detect and analyze giant star-forming clumps in galaxies at 0.5 ≤ z ≤ 1, connecting two epochs when clumps are common (at cosmic high noon, z ∼ 2) and rare (in the local Universe). We construct a clump sample whose rest-frame 1600 Å luminosity is 3 times higher than the most luminous local H ii regions (MUV ≤ −16 AB). In our sample, 35% ± 3% of low-mass galaxies (log[M∗/M⊙] < 10) are clumpy (i.e., containing at least one off-center clump). This fraction changes to 22% ± 3% and 22% ± 4% for intermediate (10 ≤ log[M∗/M⊙] ≤ 10.5) and high-mass (log[M∗/M⊙] > 10.5) galaxies, in agreement with previous studies. When compared to similar-mass nonclumpy SFGs, low- and intermediate-mass clumpy SFGs tend to have higher star formation rates (SFRs) and bluer rest-frame U − V colors, while high-mass clumpy SFGs tend to be larger than nonclumpy SFGs. However, clumpy and nonclumpy SFGs have similar Sérsic index, indicating a similar underlying density profile. Furthermore, we investigate how the UV luminosity of star-forming regions correlates with the physical properties of host galaxies. On average, more luminous star-forming regions reside in more luminous, smaller, and/or higher specific SFR galaxies and are found closer to their hosts' galactic centers.
  •  
4.
  • Strawn, Clayton, et al. (författare)
  • The AGORA High-resolution Galaxy Simulations Comparison Project. VI. Similarities and Differences in the Circumgalactic Medium
  • 2024
  • Ingår i: Astrophysical Journal. - 0004-637X. ; 962:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyze the circumgalactic medium (CGM) for eight commonly-used cosmological codes in the AGORA collaboration. The codes are calibrated to use identical initial conditions, cosmology, heating and cooling, and star formation thresholds, but each evolves with its own unique code architecture and stellar feedback implementation. Here, we analyze the results of these simulations in terms of the structure, composition, and phase dynamics of the CGM. We show properties such as metal distribution, ionization levels, and kinematics are effective tracers of the effects of the different code feedback and implementation methods, and as such they can be highly divergent between simulations. This is merely a fiducial set of models, against which we will in the future compare multiple feedback recipes for each code. Nevertheless, we find that the large parameter space these simulations establish can help disentangle the different variables that affect observable quantities in the CGM, e.g., showing that abundances for ions with higher ionization energy are more strongly determined by the simulation’s metallicity, while abundances for ions with lower ionization energy are more strongly determined by the gas density and temperature.
  •  
5.
  • Vanzella, Eros, et al. (författare)
  • JWST/NIRCam Probes Young Star Clusters in the Reionization Era Sunrise Arc
  • 2023
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 945:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Star cluster formation in the early universe and its contribution to reionization remains largely unconstrained to date. Here we present JWST/NIRCam imaging of the most highly magnified galaxy known at z ∼ 6, the Sunrise arc. We identify six young massive star clusters (YMCs) with measured radii spanning from ∼20 down to ∼1 pc (corrected for lensing magnification), estimated stellar masses of ∼106–7 M⊙, and ages of 1–30 Myr based on SED fitting to photometry measured in eight filters extending to rest frame 7000 Å. The resulting stellar mass surface densities are higher than 1000 M⊙ pc−2 (up to a few 105 M⊙ pc−2), and their inferred dynamical ages qualify the majority of these systems as gravitationally bound stellar clusters. The star cluster ages map the progression of star formation along the arc, with two evolved systems (≳10 Myr old) followed by very young clusters. The youngest stellar clusters (<5 Myr) show evidence of prominent Hβ+[O ııı] emission based on photometry with equivalent widths larger than >1000 Å rest frame and are hosted in a 200 pc sized star-forming complex. Such a region dominates the ionizing photon production with a high efficiency log(ξion [Hz erg-1]~25.7 . A significant fraction of the recently formed stellar mass of the galaxy (10%–30%) occurred in these YMCs. We speculate that such sources of ionizing radiation boost the ionizing photon production efficiency, which eventually carves ionized channels that might favor the escape of Lyman continuum radiation. The survival of some of the clusters would make them the progenitors of massive and relatively metal-poor globular clusters in the local universe.
  •  
6.
  • Welch, Brian, et al. (författare)
  • JWST Imaging of Earendel, the Extremely Magnified Star at Redshift z=6.2
  • 2022
  • Ingår i: Astrophysical Journal Letters. - : Institute of Physics (IOP). - 2041-8205 .- 2041-8213. ; 940
  • Tidskriftsartikel (refereegranskat)abstract
    • The gravitationally lensed star WHL 0137-LS, nicknamed Earendel, was identified with a photometric redshift z (phot) = 6.2 +/- 0.1 based on images taken with the Hubble Space Telescope. Here we present James Webb Space Telescope (JWST) Near Infrared Camera images of Earendel in eight filters spanning 0.8-5.0 mu m. In these higher-resolution images, Earendel remains a single unresolved point source on the lensing critical curve, increasing the lower limit on the lensing magnification to mu > 4000 and restricting the source plane radius further to r < 0.02 pc, or similar to 4000 au. These new observations strengthen the conclusion that Earendel is best explained by an individual star or multiple star system and support the previous photometric redshift estimate. Fitting grids of stellar spectra to our photometry yields a stellar temperature of T (eff) similar to 13,000-16,000 K, assuming the light is dominated by a single star. The delensed bolometric luminosity in this case ranges from log(L)=5.8 L-theta, which is in the range where one expects luminous blue variable stars. Follow-up observations, including JWST NIRSpec scheduled for late 2022, are needed to further unravel the nature of this object, which presents a unique opportunity to study massive stars in the first billion years of the universe.
  •  
7.
  • Welch, Brian, et al. (författare)
  • RELICS : Small-scale Star Formation in Lensed Galaxies at z=6-10
  • 2023
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 943:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Detailed observations of star-forming galaxies at high redshift are critical to understanding the formation and evolution of the earliest galaxies. Gravitational lensing provides an important boost, allowing observations at physical scales unreachable in unlensed galaxies. We present three lensed galaxies from the RELICS survey at z (phot) = 6-10, including the most highly magnified galaxy at z (phot) similar to 6 (WHL 0137-zD1, dubbed the Sunrise Arc), the brightest known lensed galaxy at z (phot) similar to 6 (MACS 0308-zD1), and the only spatially resolved galaxy currently known at z (phot) similar to 10 (SPT 0615-JD). The Sunrise Arc contains seven star-forming clumps with delensed radii as small as 3 pc, the smallest spatial scales yet observed in a z > 6 galaxy, while SPT 0615-JD contains features measuring a few tens of parsecs. MACS 0308-zD1 contains an r similar to 30 pc clump with a star formation rate (SFR) of similar to 3 M (circle dot) yr(-1), giving it an SFR surface density of sigma(SFR) similar to 10(3) M (circle dot) yr(-1) kpc(-2). These galaxies provide a unique window into small-scale star formation during the epoch of reionization. They will be excellent targets for future observations with JWST, including one approved program targeting the Sunrise Arc.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy