SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Marchi A. Zuccaro) "

Sökning: WFRF:(Marchi A. Zuccaro)

  • Resultat 1-23 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdellaoui, G., et al. (författare)
  • Meteor studies in the framework of the JEM-EUSO program
  • 2017
  • Ingår i: Planetary and Space Science. - : Elsevier. - 0032-0633 .- 1873-5088. ; 143, s. 245-255
  • Tidskriftsartikel (refereegranskat)abstract
    • We summarize the state of the art of a program of UV observations from space of meteor phenomena, a secondary objective of the JEM-EUSO international collaboration. Our preliminary analysis indicates that JEM-EUSO, taking advantage of its large FOV and good sensitivity, should be able to detect meteors down to absolute magnitude close to 7. This means that JEM-EUSO should be able to record a statistically significant flux of meteors, including both sporadic ones, and events produced by different meteor streams. Being unaffected by adverse weather conditions, JEM-EUSO can also be a very important facility for the detection of bright meteors and fireballs, as these events can be detected even in conditions of very high sky background. In the case of bright events, moreover, exhibiting some persistence of the meteor train, preliminary simulations show that it should be possible to exploit the motion of the ISS itself and derive at least a rough 3D reconstruction of the meteor trajectory. Moreover, the observing strategy developed to detect meteors may also be applied to the detection of nuclearites, exotic particles whose existence has been suggested by some theoretical investigations. Nuclearites are expected to move at higher velocities than meteoroids, and to exhibit a wider range of possible trajectories, including particles moving upward after crossing the Earth. Some pilot studies, including the approved Mini-EUSO mission, a precursor of JEM-EUSO, are currently operational or in preparation. We are doing simulations to assess the performance of Mini-EUSO for meteor studies, while a few meteor events have been already detected using the ground-based facility EUSO-TA.
  •  
2.
  • Abdellaoui, G., et al. (författare)
  • First observations of speed of light tracks by a fluorescence detector looking down on the atmosphere
  • 2018
  • Ingår i: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • EUSO-Balloon is a pathfinder mission for the Extreme Universe Space Observatory onboard the Japanese Experiment Module (JEM-EUSO). It was launched on the moonless night of the 25(th) of August 2014 from Timmins, Canada. The flight ended successfully after maintaining the target altitude of 38 km for five hours. One part of the mission was a 2.5 hour underflight using a helicopter equipped with three UV light sources (LED, xenon flasher and laser) to perform an inflight calibration and examine the detectors capability to measure tracks moving at the speed of light. We describe the helicopter laser system and details of the underflight as well as how the laser tracks were recorded and found in the data. These are the first recorded laser tracks measured from a fluorescence detector looking down on the atmosphere. Finally, we present a first reconstruction of the direction of the laser tracks relative to the detector.
  •  
3.
  • Abdellaoui, G., et al. (författare)
  • An overview of the JEM-EUSO program and results
  • 2022
  • Ingår i: 37th International Cosmic Ray Conference, ICRC 2021. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The field of UHECRs (Ultra-High energy cosmic Rays) and the understanding of particle acceleration in the cosmos, as a key ingredient to the behaviour of the most powerful sources in the universe, is of outmost importance for astroparticle physics as well as for fundamental physics and will improve our general understanding of the universe. The current main goals are to identify sources of UHECRs and their composition. For this, increased statistics is required. A space-based detector for UHECR research has the advantage of a very large exposure and a uniform coverage of the celestial sphere. The aim of the JEM-EUSO program [1] is to bring the study of UHECRs to space. The principle of observation is based on the detection of UV light emitted by isotropic fluorescence of atmospheric nitrogen excited by the Extensive Air Showers (EAS) in the Earth's atmosphere and forward-beamed Cherenkov radiation reflected from the Earth's surface or dense cloud tops. In addition to the prime objective of UHECR studies, JEM-EUSO will do several secondary studies due to the instruments' unique capacity of detecting very weak UV-signals with extreme time-resolution around 1 μs: meteors, Transient Luminous Events (TLE), bioluminescence, maps of human generated UV-light, searches for Strange Quark Matter (SQM) and high-energy neutrinos, and more. The JEM-EUSO program includes several missions from ground (EUSO-TA [2]), from stratospheric balloons (EUSO-Balloon [3], EUSO-SPB1 [4], EUSO-SPB2 [5]), and from space (TUS [6], Mini-EUSO [7]) employing fluorescence detectors to demonstrate the UHECR observation from space and prepare the large size missions K-EUSO [8] and POEMMA [9]. A review of the current status of the program, the key results obtained so far by the different projects, and the perspectives for the near future are presented.
  •  
4.
  • Abdellaoui, G., et al. (författare)
  • Cosmic ray oriented performance studies for the JEM-EUSO first level trigger
  • 2017
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier. - 0168-9002 .- 1872-9576. ; , s. 150-163
  • Tidskriftsartikel (refereegranskat)abstract
    • JEM-EUSO is a space mission designed to investigate Ultra-High Energy Cosmic Rays and Neutrinos (E > 5.10(19) eV) from the International Space Station (ISS). Looking down from above its wide angle telescope is able to observe their air showers and collect such data from a very wide area. Highly specific trigger algorithms are needed to drastically reduce the data load in the presence of both atmospheric and human activity related background light, yet retain the rare cosmic ray events recorded in the telescope. We report the performance in offline testing of the first level trigger algorithm on data from JEM-EUSO prototypes and laboratory measurements observing different light sources: data taken during a high altitude balloon flight over Canada, laser pulses observed from the ground traversing the real atmosphere, and model landscapes reproducing realistic aspect ratios and light conditions as would be seen from the ISS itself. The first level trigger logic successfully kept the trigger rate within the permissible bounds when challenged with artificially produced as well as naturally encountered night sky background fluctuations and while retaining events with general air-shower characteristics.
  •  
5.
  • Abdellaoui, G., et al. (författare)
  • EUSO-SPB1 mission and science
  • 2024
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 154, s. 102891-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Extreme Universe Space Observatory on a Super Pressure Balloon 1 (EUSO-SPB1) was launched in 2017 April from Wanaka, New Zealand. The plan of this mission of opportunity on a NASA super pressure balloon test flight was to circle the southern hemisphere. The primary scientific goal was to make the first observations of ultra-high-energy cosmic-ray extensive air showers (EASs) by looking down on the atmosphere with an ultraviolet (UV) fluorescence telescope from suborbital altitude (33 km). After 12 days and 4 h aloft, the flight was terminated prematurely in the Pacific Ocean. Before the flight, the instrument was tested extensively in the West Desert of Utah, USA, with UV point sources and lasers. The test results indicated that the instrument had sensitivity to EASs of ⪆3 EeV. Simulations of the telescope system, telescope on time, and realized flight trajectory predicted an observation of about 1 event assuming clear sky conditions. The effects of high clouds were estimated to reduce this value by approximately a factor of 2. A manual search and a machine-learning-based search did not find any EAS signals in these data. Here we review the EUSO-SPB1 instrument and flight and the EAS search.
  •  
6.
  • Abdellaoui, G., et al. (författare)
  • Science and mission status of EUSO-SPB2
  • 2022
  • Ingår i: 37th International Cosmic Ray Conference, ICRC 2021. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The Extreme Universe Space Observatory on a Super Pressure Balloon II (EUSO-SPB2) is a second generation stratospheric balloon instrument for the detection of Ultra High Energy Cosmic Rays (UHECRs, E > 1 EeV) via the fluorescence technique and of Very High Energy (VHE, E > 10 PeV) neutrinos via Cherenkov emission. EUSO-SPB2 is a pathfinder mission for instruments like the proposed Probe Of Extreme Multi-Messenger Astrophysics (POEMMA). The purpose of such a space-based observatory is to measure UHECRs and UHE neutrinos with high statistics and uniform exposure. EUSO-SPB2 is designed with two Schmidt telescopes, each optimized for their respective observational goals. The Fluorescence Telescope looks at the nadir to measure the fluorescence emission from UHECR-induced extensive air shower (EAS), while the Cherenkov Telescope is optimized for fast signals (∼10 ns) and points near the Earth's limb. This allows for the measurement of Cherenkov light from EAS caused by Earth skimming VHE neutrinos if pointed slightly below the limb or from UHECRs if observing slightly above. The expected launch date of EUSO-SPB2 is Spring 2023 from Wanaka, NZ with target duration of up to 100 days. Such a flight would provide thousands of VHECR Cherenkov signals in addition to tens of UHECR fluorescence tracks. Neither of these kinds of events have been observed from either orbital or suborbital altitudes before, making EUSO-SPB2 crucial to move forward towards a space-based instrument. It will also enhance the understanding of potential background signals for both detection techniques. This contribution will provide a short overview of the detector and the current status of the mission as well as its scientific goals.
  •  
7.
  • Abdellaoui, G., et al. (författare)
  • Towards observations of nuclearites in Mini-EUSO
  • 2022
  • Ingår i: 37th International Cosmic Ray Conference, ICRC 2021. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • Mini-EUSO is a small orbital telescope with a field of view of 44◦ × 44◦, observing the night-time Earth mostly in 320-420 nm band. Its time resolution spanning from microseconds (triggered) to milliseconds (untriggered) and more than 300 × 300 km of the ground covered, already allowed it to register thousands of meteors. Such detections make the telescope a suitable tool in the search for hypothetical heavy compact objects, which would leave trails of light in the atmosphere due to their high density and speed. The most prominent example are the nuclearites – hypothetical lumps of strange quark matter that could be stabler and denser than the nuclear matter. In this paper, we show potential limits on the flux of nuclearites after collecting 42 hours of observations data.
  •  
8.
  • Abdellaoui, G., et al. (författare)
  • Ultra-violet imaging of the night-time earth by EUSO-Balloon towards space-based ultra-high energy cosmic ray observations
  • 2019
  • Ingår i: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 111, s. 54-71
  • Tidskriftsartikel (refereegranskat)abstract
    • The JEM-EUSO (Joint Experiment Missions for the Extreme Universe Space Observatory) program aims at developing Ultra-Violet (UV) fluorescence telescopes for efficient detections of Extensive Air Showers (EASs) induced by Ultra-High Energy Cosmic Rays (UHECRs) from satellite orbit. In order to demonstrate key technologies for JEM-EUSO, we constructed the EUSO-Balloon instrument that consists of a similar to 1 m(2) refractive telescope with two Fresnel lenses and an array of multi-anode photo-multiplier tubes at the focus. Distinguishing it from the former balloon-borne experiments, EUSO-Balloon has the capabilities of single photon counting with a gate time of 2.3 mu s and of imaging with a total of 2304 pixels. As a pathfinder mission, the instrument was launched for an 8 h stratospheric flight on a moonless night in August 2014 over Timmins, Canada. In this work, we analyze the count rates over similar to 2.5 h intervals. The measurements are of diffuse light, e.g. of airglow emission, back-scattered from the Earth's atmosphere as well as artificial light sources. Count rates from such diffuse light are a background for EAS detections in future missions and relevant factor for the analysis of EAS events. We also obtain the geographical distribution of the count rates over a similar to 780 km(2) area along the balloon trajectory. In developed areas, light sources such as the airport, mines, and factories are clearly identified. This demonstrates the correct location of signals that will be required for the EAS analysis in future missions. Although a precise determination of count rates is relevant for the existing instruments, the absolute intensity of diffuse light is deduced for the limited conditions by assuming spectra models and considering simulations of the instrument response. Based on the study of diffuse light by EUSO-Balloon, we also discuss the implications for coming pathfinders and future space-based UHECR observation missions.
  •  
9.
  • Bacholle, S., et al. (författare)
  • Mini-EUSO Mission to Study Earth UV Emissions on board the ISS
  • 2021
  • Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 253:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Mini-EUSO is a telescope observing the Earth in the ultraviolet band from the International Space Station. It is a part of the JEM-EUSO program, paving the way to future larger missions, such as K-EUSO and POEMMA, devoted primarily to the observation of ultrahigh-energy cosmic rays from space. Mini-EUSO is capable of observing extensive air showers generated by ultrahigh-energy cosmic rays with an energy above 10(21) eV and to detect artificial showers generated with lasers from the ground. Other main scientific objectives of the mission are the search for nuclearites and strange quark matter, the study of atmospheric phenomena such as transient luminous events, meteors, and meteoroids, the observation of sea bioluminescence and of artificial satellites and man-made space debris. Mini-EUSO will map the nighttime Earth in the UV range (290-430 nm), with a spatial resolution of about 6.3 km and a temporal resolution of 2.5 mu s, through a nadir-facing UV-transparent window in the Russian Zvezda module. The instrument, launched on 2019 August 22, from the Baikonur Cosmodrome, is based on an optical system employing two Fresnel lenses and a focal surface composed of 36 multianode photomultiplier tubes, 64 channels each, for a total of 2304 channels with single-photon counting sensitivity and an overall field of view of 44 degrees. Mini-EUSO also contains two ancillary cameras to complement measurements in the near-infrared and visible ranges. In this paper, we describe the detector and present the various phenomena observed in the first months of operations.
  •  
10.
  • Bianciotto, Marta, et al. (författare)
  • Expected performance of the K-EUSO space-based observatory
  • 2022
  • Ingår i: 37th International Cosmic Ray Conference, ICRC 2021. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • K-EUSO is a planned mission of the JEM-EUSO program for the study of ultra-high energy cosmic rays (UHECR) from space, to be deployed on the International Space Station. The K-EUSO observatory consists of a UV telescope with a wide field of view, which aims at the detection of fluorescence light emitted by extensive air showers (EAS) in the atmosphere. The EAS events will be sampled with a time resolution of 1-2.5 μs to reconstruct the entire shower profile with high precision. The detector consisting of ∼ 105 independent pixels will allow a spatial resolution of ∼700 m on ground. From a 400 km altitude, K-EUSO will achieve a large and full sky exposure to sample the highest energy range of the UHECR spectrum. In this contribution, we present estimates of the performance of the observatory: an estimation of the expected exposure and triggered event rate as a function of energy and the event reconstruction performance, including resolution of arrival directions and energy of UHECRs.
  •  
11.
  • Casolino, M., et al. (författare)
  • The Mini-EUSO telescope on board the International Space Station : Launch and first results
  • 2022
  • Ingår i: 37th International Cosmic Ray Conference, ICRC 2021. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • Mini-EUSO is a telescope launched on board the International Space Station in 2019 and currently located in the Russian section of the station. Main scientific objectives of the mission are the search for nuclearites and Strange Quark Matter, the study of atmospheric phenomena such as Transient Luminous Events, meteors and meteoroids, the observation of sea bioluminescence and of artificial satellites and man-made space debris. It is also capable of observing Extensive Air Showers generated by Ultra-High Energy Cosmic Rays with an energy above 1021 eV and detect artificial showers generated with lasers from the ground. Mini-EUSO can map the night-time Earth in the UV range (290 - 430 nm), with a spatial resolution of about 6.3 km and a temporal resolution of 2.5 μs, observing our planet through a nadir-facing UV-transparent window in the Russian Zvezda module. The instrument, launched on 2019/08/22 from the Baikonur cosmodrome, is based on an optical system employing two Fresnel lenses and a focal surface composed of 36 Multi-Anode Photomultiplier tubes, 64 channels each, for a total of 2304 channels with single photon counting sensitivity and an overall field of view of 44◦. Mini-EUSO also contains two ancillary cameras to complement measurements in the near infrared and visible ranges. In this paper we describe the detector and present the various phenomena observed in the first year of operation.
  •  
12.
  • Diesing, R., et al. (författare)
  • UCIRC2: EUSO-SPB2’s Infrared Cloud Monitor
  • 2022
  • Ingår i: 37th International Cosmic Ray Conference, ICRC 2021. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The second generation of the Extreme Universe Space Observatory on a Super Pressure Balloon (EUSO-SPB2) is a balloon instrument for the detection of ultra high energy cosmic rays (UHECRs) with energies above 1 EeV and very high energy neutrinos with energies above 10 PeV. EUSOSPB2 consists of two telescopes: a fluorescence telescope pointed downward for the detection of UHECRs and a Cherenkov telescope pointed towards the limb for the detection of tau lepton-induced showers produced by up-going tau neutrinos and background signals below the limb. Clouds inside the field of view of these telescopes reduce EUSO-SPB2’s geometric aperture, in particular that of the fluorescence telescope. For this reason, cloud coverage and cloud-top altitude within the field of view of the fluorescence telescope must be monitored throughout data-taking. The University of Chicago Infrared Camera (UCIRC2) will monitor these clouds using two infrared cameras with response centered at wavelengths 10 and 12 microns. By capturing images at wavelengths spanning the cloud thermal emission peak, UCIRC2 will measure cloud color-temperatures and thus cloud-top altitudes. In this contribution, we provide an overview of UCIRC2, including an update on its construction and a discussion of the techniques used to calibrate the instrument.
  •  
13.
  • Fenu, Francesco, et al. (författare)
  • Estimation of the exposure of the TUS space-based cosmic ray observatory
  • 2022
  • Ingår i: 37th International Cosmic Ray Conference, ICRC 2021. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The TUS observatory was the first orbital detector aimed at the detection of ultra-high energy cosmic rays (UHECRs). It was launched on April 28, 2016, from the Vostochny cosmodrome in Russia and operated until December 2017. It collected ∼ 80, 000 events with a time resolution of 0.8 μs. A fundamental parameter to be determined for cosmic ray studies is the exposure of an experiment. This parameter is important to estimate the average expected event rate as a function of energy and to calculate the absolute flux in case of event detection. Here we present results of a study aimed to calculate the exposure that TUS accumulated during its mission. The role of clouds, detector dead time, artificial sources, storms, lightning discharges, airglow and moon phases is studied in detail. An exposure estimate with its geographical distribution is presented. We report on the applied technique and on the perspectives of this study in view of the future missions of the JEM-EUSO program.
  •  
14.
  • Golzio, Alessio, et al. (författare)
  • A study on UV emission from clouds with Mini-EUSO
  • 2022
  • Ingår i: 37th International Cosmic Ray Conference, ICRC 2021. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • Mini-EUSO is the first mission of the JEM-EUSO program located on the International Space Station. One of the main goals of the mission is to provide valuable scientific data in view of future large missions devoted to study Ultra-High Energy Cosmic Rays (UHECRs) from space by exploiting the fluorescence emission generated by Extensive Air Showers (EAS) developing in the atmosphere. A space mission like Mini-EUSO experiences continuous changes in atmospheric conditions, including the cloud presence. The influence of clouds on space-based observation is, therefore, an important topic to investigate as it might alter the instantaneous exposure for EAS detection or deteriorate the quality of the EAS images with consequences on the reconstructed EAS parameters. For this purpose, JEM-EUSO is planning to have an IR camera and a lidar as part of its Atmospheric Monitoring System. At the same time, it would be extremely beneficial if the UV camera itself would be able to detect the presence of clouds, at least in some specific conditions. For this reason, we analyze a few case studies by comparing the pixel count rates from Mini-EUSO during orbits with the cloud cover (as cloud fraction). This quantity is retrieved from the Global Forecast System (GFS) model at different height levels over the Mini-EUSO trajectory. The results of this analysis are reported.
  •  
15.
  • Heaton, C., et al. (författare)
  • Expected Performance of the EUSO-SPB2 Fluorescence Telescope
  • 2022
  • Ingår i: 37th International Cosmic Ray Conference, ICRC 2021. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The Extreme Universe Space Observatory Super Pressure Balloon 2 (EUSO-SPB2) is under development, and will prototype instrumentation for future satellite-based missions, including the Probe of Extreme Multi-Messenger Astrophysics (POEMMA). EUSO-SPB2 will consist of two telescopes. The first is a Cherenkov telescope (CT) being developed to identify and estimate the background sources for future below-the-limb very high energy (E>10 PeV) astrophysical neutrino observations, as well as above-the-limb cosmic ray induced signals (E>1 PeV). The second is a fluorescence telescope (FT) being developed for detection of Ultra High Energy Cosmic Rays (UHECRs). In preparation for the expected launch in 2023, extensive simulations tuned by preliminary laboratory measurements have been performed to understand the FT capabilities. The energy threshold has been estimated at 1018.2 eV, and results in a maximum detection rate at 1018.6 eV when taking into account the shape of the UHECR spectrum. In addition, onboard software has been developed based on the simulations as well as experience with previous EUSO missions. This includes a level 1 trigger to be run on the computationally limited flight hardware, as well as a deep learning based prioritization algorithm in order to accommodate the balloon's telemetry budget. These techniques could also be used later for future, space-based missions.
  •  
16.
  • Kungel, Viktoria, et al. (författare)
  • EUSO-SPB2 Telescope Optics and Testing
  • 2022
  • Ingår i: 37th International Cosmic Ray Conference, ICRC 2021. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The Extreme Universe Space Observatory - Super Pressure Balloon (EUSO-SPB2) mission will fly two custom telescopes that feature Schmidt optics to measure Čerenkov- and fluorescence-emission of extensive air-showers from cosmic rays at the PeV and EeV-scale, and search for τ-neutrinos. Both telescopes have 1-meter diameter apertures and UV/UV-visible sensitivity. The Čerenkov telescope uses a bifocal mirror segment alignment, to distinguish between a direct cosmic ray that hits the camera versus the Čerenkov light from outside the telescope. Telescope integration and laboratory calibration will be performed in Colorado. To estimate the point spread function and efficiency of the integrated telescopes, a test beam system that delivers a 1-meter diameter parallel beam of light is being fabricated. End-to-end tests of the fully integrated instruments will be carried out in a field campaign at dark sites in the Utah desert using cosmic rays, stars, and artificial light sources. Laser tracks have long been used to characterize the performance of fluorescence detectors in the field. For EUSO-SPB2 an improvement in the method that includes a correction for aerosol attenuation is anticipated by using a bi-dynamic Lidar configuration in which both the laser and the telescope are steerable. We plan to conduct these field tests in Fall 2021 and Spring 2022 to accommodate the scheduled launch of EUSO-SPB2 in 2023 from Wanaka, New Zealand.
  •  
17.
  • Marcelli, Laura, et al. (författare)
  • Observation of ELVES with Mini-EUSO telescope on board the International Space Station
  • 2022
  • Ingår i: 37th International Cosmic Ray Conference, ICRC 2021. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • Mini-EUSO is a detector observing the Earth in the ultraviolet band from the International Space Station through a nadir-facing window, transparent to the UV radiation, in the Russian Zvezda module. Mini-EUSO main detector consists in an optical system with two Fresnel lenses and a focal surface composed of an array of 36 Hamamatsu Multi-Anode Photo-Multiplier tubes, for a total of 2304 pixels, with single photon counting sensitivity. The telescope also contains two ancillary cameras, in the near infrared and visible ranges, to complement measurements in these bandwidths. The instrument has a field of view of 44◦, a spatial resolution of about 6.3 km on the Earth surface and of about 4.7 km on the ionosphere. The telescope detects UV emissions of cosmic, atmospheric and terrestrial origin on different time scales, from a few µs upwards. On the fastest timescale of 2.5 µs, Mini-EUSO is able to observe atmospheric phenomena as Transient Luminous Events and in particular the ELVES, which take place when an electromagnetic wave generated by intra-cloud lightning interacts with the ionosphere, ionizing it and producing apparently superluminal expanding rings of several 100 km and lasting ' 100 µs. These highly energetic fast events have been observed to be produced in conjunction also with Terrestrial Gamma-Ray Flashes and therefore a detailed study of their characteristics (speed, radius, energy ...) is of crucial importance for the understanding of these phenomena. In this paper we present the observational capabilities of ELVE detection by Mini-EUSO and specifically the reconstruction and study of ELVE characteristics.
  •  
18.
  • Marcelli, L., et al. (författare)
  • The Mini-EUSO telescope on board the International Space Station : Launch and first observations
  • 2021
  • Ingår i: NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS. - : SOC ITALIANA FISICA. - 2037-4909. ; 44:2-3
  • Tidskriftsartikel (refereegranskat)abstract
    • Mini-EUSO is a telescope that observes the Earth from the International Space Station by recording ultraviolet emissions (290-430 nm) of cosmic, atmospheric and terrestrial origin with a field of view of 44. and on different time scales, from a few microseconds upwards. The scientific objectives are manifold and span several fields of research: Ultra-High Energy Cosmic Rays, atmospheric phenomena such as ELVEs, meteors and meteoroids, maps of the Earth night-time ultraviolet emissions and others. In this paper we will describe the instrument, the launching phase and we will discuss some of its first observations.
  •  
19.
  • Miyamoto, H., et al. (författare)
  • EUSO@TurLab project in view of Mini-EUSO and EUSO-SPB2 missions
  • 2022
  • Ingår i: 37th International Cosmic Ray Conference, ICRC 2021. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The TurLab facility is a laboratory, equipped with a 5 m diameter and 1 m depth rotating tank, located in the fourth basement level of the Physics Department of the University of Turin. In the past years, we have used the facility to perform experiments related to the observations of Extreme Energy Cosmic Rays (EECRs) from space using the fluorescence technique for JEM-EUSO missions with the main objective to test the response of the trigger logic. In the missions, the diffuse night brightness and artificial and natural light sources can vary significantly in time and space in the Field of View (FoV) of the telescope. Therefore, it is essential to verify the detector performance and test the trigger logic under such an environment. By means of the tank rotation, a various terrestrial surface with the different optical characteristics such as ocean, land, forest, desert and clouds, as well as artificial and natural light sources such as city lights, lightnings and meteors passing by the detector FoV one after the other is reproduced. The fact that the tank located in a very dark place enables the tests under an optically controlled environment. Using the Mini-EUSO data taken since 2019 onboard the ISS, we will report on the comparison between TurLab and ISS measurements in view of future experiments at TurLab. Moreover, in the forthcoming months we will start testing the trigger logic of the EUSO-SPB2 mission. We report also on the plans and status for this purpose.
  •  
20.
  • Miyamoto, H., et al. (författare)
  • Simulation studies for the Mini-EUSO detector
  • 2022
  • Ingår i: 37th International Cosmic Ray Conference, ICRC 2021. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • Mini-EUSO is a mission of the JEM-EUSO program flying onboard the International Space Station since August 2019. Since the first data acquisition in October 2019, more than 35 sessions have been performed for a total of 52 hours of observations. The detector has been observing Earth at night-time in the UV range and detected a wide variety of transient sources all of which have been modeled through Monte Carlo simulations. Mini-EUSO is also capable of detecting meteors and potentially space debris and we performed simulations for such events to estimate their impact on future missions for cosmic ray science from space. We show here examples of the simulation work done in this framework to analyze the Mini-EUSO data. The expected response of Mini-EUSO with respect to ultra high energy cosmic ray showers has been studied. The efficiency curve of Mini-EUSO as a function of primary energy has been estimated and the energy threshold for Cosmic Rays has been placed to be above 1021 eV. We compared the morphology of several transient events detected during the mission with cosmic ray simulations and excluded that they can be due to cosmic ray showers. To validate the energy threshold of the detector, a system of ground based flashers is being used for end-to-end calibration purposes. We therefore implemented a parameterization of such flashers into the JEM-EUSO simulation framework and studied the response of the detector with respect to such sources.
  •  
21.
  • Osteria, G., et al. (författare)
  • The Fluorescence Telescope on board EUSO-SPB2 for the detection of Ultra High Energy Cosmic Rays
  • 2022
  • Ingår i: 37th International Cosmic Ray Conference, ICRC 2021. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The Fluorescence Telescope is one of the two telescopes on board the Extreme Universe Space Observatory on a Super Pressure Balloon II (EUSO-SPB2). EUSO-SPB2 is an ultra-long-duration balloon mission that aims at the detection of Ultra High Energy Cosmic Rays (UHECR) via the fluorescence technique (using a Fluorescence Telescope) and of Ultra High Energy (UHE) neutrinos via Cherenkov emission (using a Cherenkov Telescope). The mission is planned to fly in 2023 and is a precursor of the Probe of Extreme Multi-Messenger Astrophysics (POEMMA). The Fluorescence Telescope is a second generation instrument preceded by the telescopes flown on the EUSO-Balloon and EUSO-SPB1 missions. It features Schmidt optics and has a 1-meter diameter aperture. The focal surface of the telescope is equipped with a 6912-pixel Multi Anode Photo Multipliers (MAPMT) camera covering a 37.4 x 11.4 degree Field of Regard. Such a big Field of Regard, together with a flight target duration of up to 100 days, would allow, for the first time from suborbital altitudes, detection of UHECR fluorescence tracks. This contribution will provide an overview of the instrument including the current status of the telescope development.
  •  
22.
  • Shinozaki, K., et al. (författare)
  • Measurement of UV light emission of the nighttime Earth by Mini-EUSO for space-based UHECR observations
  • 2022
  • Ingår i: 37th International Cosmic Ray Conference, ICRC 2021. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The JEM-EUSO (Joint Experiment Missions for Extreme Universe Space Observatory) program aims at the realization of the ultra-high energy cosmic ray (UHECR) observation using wide field of view fluorescence detectors in orbit. Ultra-violet (UV) light emission from the atmosphere such as airglow and anthropogenic light on the Earth’s surface are the main background for the space-based UHECR observations. The Mini-EUSO mission has been operated on the International Space Station (ISS) since 2019 which is the first space-based experiment for the program. The Mini-EUSO instrument consists of a 25 cm refractive optics and the photo-detector module with the 2304-pixel array of the multi-anode photomultiplier tubes. On the nadir-looking window of the ISS, the instrument is capable of continuously monitoring a ∼300 km × 300 km area. In the present work, we report the preliminary result of the measurement of the UV light in the nighttime Earth using the Mini-EUSO data downlinked to the ground. We mapped UV light distribution both locally and globally below the ISS obit. Simulations were also made to characterize the instrument response to diffuse background light. We discuss the impact of such light on space-based UHECR observations and the Mini-EUSO science objectives.
  •  
23.
  • Venters, Tonia M., et al. (författare)
  • Neutrino Target-of-Opportunity Observations with Space-based and Suborbital Optical Cherenkov Detectors
  • 2022
  • Ingår i: 37th International Cosmic Ray Conference, ICRC 2021. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • Cosmic-ray accelerators capable of reaching ultra-high energies are expected to also produce very-high energy neutrinos via hadronic interactions within the source or its surrounding environment. Many of the candidate astrophysical source classes are either transient in nature or exhibit flaring activity. Using the Earth as a neutrino converter, suborbital and space-based optical Cherenkov detectors, such as POEMMA and EUSO-SPB2, will be able to detect upward-moving extensive air showers induced by decaying tau-leptons generated from cosmic tau neutrinos with energies ∼ 10 PeV and above. Both EUSO-SPB2 and POEMMA will be able to quickly repoint, enabling rapid response to astrophysical transient events. We calculate the transient sensitivity and sky coverage for both EUSO-SPB2 and POEMMA, accounting for constraints imposed by the Sun and the Moon on the observation time. We also calculate both detectors' neutrino horizons for a variety of modeled astrophysical neutrino fluences. We find that both EUSO-SPB2 and POEMMA will achieve transient sensitivities at the level of modeled neutrino fluences for nearby sources. We conclude with a discussion of the prospects of each mission detecting at least one transient event for various modeled astrophysical neutrino sources.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-23 av 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy