SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Marcote B.) "

Sökning: WFRF:(Marcote B.)

  • Resultat 1-22 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aartsen, M. G., et al. (författare)
  • Very high-energy gamma-ray follow-up program using neutrino triggers from IceCube
  • 2016
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe and report the status of a neutrino-triggered program in IceCube that generates real-time alerts for gamma-ray follow-up observations by atmospheric-Cherenkov telescopes (MAGIC and VERITAS). While IceCube is capable of monitoring the whole sky continuously, high-energy gamma-ray telescopes have restricted fields of view and in general are unlikely to be observing a potential neutrino-flaring source at the time such neutrinos are recorded. The use of neutrino-triggered alerts thus aims at increasing the availability of simultaneous multi-messenger data during potential neutrino flaring activity, which can increase the discovery potential and constrain the phenomenological interpretation of the high-energy emission of selected source classes (e. g. blazars). The requirements of a fast and stable online analysis of potential neutrino signals and its operation are presented, along with first results of the program operating between 14 March 2012 and 31 December 2015.
  •  
2.
  • De Angelis, A., et al. (författare)
  • Science with e-ASTROGAM A space mission for MeV-GeV gamma-ray astrophysics
  • 2018
  • Ingår i: Journal of High Energy Astrophysics. - : Elsevier. - 2214-4048 .- 2214-4056. ; 19, s. 1-106
  • Tidskriftsartikel (refereegranskat)abstract
    • e-ASTROGAM ('enhanced ASTROGAM') is a breakthrough Observatory space mission, with a detector composed by a Silicon tracker, a calorimeter, and an anticoincidence system, dedicated to the study of the non-thermal Universe in the photon energy range from 0.3 MeV to 3 GeV - the lower energy limit can be pushed to energies as low as 150 keV for the tracker, and to 30 keV for calorimetric detection. The mission is based on an advanced space-proven detector technology, with unprecedented sensitivity, angular and energy resolution, combined with polarimetric capability. Thanks to its performance in the MeV-GeV domain, substantially improving its predecessors, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the most powerful Galactic and extragalactic sources, elucidating the nature of their relativistic outflows and their effects on the surroundings. With a line sensitivity in the MeV energy range one to two orders of magnitude better than previous generation instruments, e-ASTROGAM will determine the origin of key isotopes fundamental for the understanding of supernova explosion and the chemical evolution of our Galaxy. The mission will provide unique data of significant interest to a broad astronomical community, complementary to powerful observatories such as LIGO-Virgo-GEO600-KAGRA, SKA, ALMA, E-ELT, TMT, LSST, JWST, Athena, CTA, IceCube, KM3NeT, and LISA.
  •  
3.
  • Ahnen, M. L., et al. (författare)
  • Limits to dark matter annihilation cross-section from a combined analysis of MAGIC and Fermi-LAT observations of dwarf satellite galaxies
  • 2016
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first joint analysis of gamma-ray data from the MAGIC Cherenkov telescopes and the Fermi Large Area Telescope (LAT) to search for gamma-ray signals from dark matter annihilation in dwarf satellite galaxies. We combine 158 hours of Segue 1 observations with MAGIC with 6-year observations of 15 dwarf satellite galaxies by the Fermi-LAT. We obtain limits on the annihilation cross-section for dark matter particle masses between 10 GeV and 100 TeV - the widest mass range ever explored by a single gamma-ray analysis. These limits improve on previously published Fermi-LAT and MAGIC results by up to a factor of two at certain masses. Our new inclusive analysis approach is completely generic and can be used to perform a global, sensitivity-optimized dark matter search by combining data from present and future gamma-ray and neutrino detectors.
  •  
4.
  • Amiri, M., et al. (författare)
  • Periodic activity from a fast radio burst source
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 582:7812, s. 351-355
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast radio bursts (FRBs) are bright, millisecond-duration radio transients originating from sources at extragalactic distances1, the origin of which is unknown. Some FRB sources emit repeat bursts, ruling out cataclysmic origins for those events2–4. Despite searches for periodicity in repeat burst arrival times on timescales from milliseconds to many days2,5–7, these bursts have hitherto been observed to appear sporadically and—although clustered8—without a regular pattern. Here we report observations of a 16.35 ± 0.15 day periodicity (or possibly a higher-frequency alias of that periodicity) from the repeating FRB 180916.J0158+65 detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst Project4,9. In 38 bursts recorded from 16 September 2018 to 4 February 2020 utc, we find that all bursts arrive in a five-day phase window, and 50 per cent of the bursts arrive in a 0.6-day phase window. Our results suggest a mechanism for periodic modulation either of the burst emission itself or through external amplification or absorption, and disfavour models invoking purely sporadic processes.
  •  
5.
  • Aleksic, J., et al. (författare)
  • Measurement of the Crab Nebula spectrum over three decades in energy with the MAGIC telescopes
  • 2015
  • Ingår i: Journal of High Energy Astrophysics. - : Elsevier BV. - 2214-4048 .- 2214-4056. ; 5-6, s. 30-38
  • Tidskriftsartikel (refereegranskat)abstract
    • The MAGIC stereoscopic system collected 69 hours of Crab Nebula data between October 2009 and April 2011. Analysis of this data sample using the latest improvements in the MAGIC stereoscopic software provided an unprecedented precision of spectral and night-by-night light curve determination at gamma rays. We derived a differential spectrum with a single instrument from 50 GeV up to almost 30 TeV with 5 bins per energy decade. At low energies, MAGIC results, combined with Fermi-LAT data, show a flat and broad Inverse Compton peak. The overall fit to the data between 1 GeV and 30 TeV is not well described by a log-parabola function. We find that a modified log-parabola function with an exponent of 2.5 instead of 2 provides a good description of the data (chi(2)(red) = 35/26). Using systematic uncertainties of the MAGIC and Fermi-LAT measurements we determine the position of the Inverse Compton peak to be at (53 +/- 3(stat)+ 31(syst)-13(syst)) GeV, which is the most precise estimation up to date and is dominated by the systematic effects. There is no hint of the integral flux variability on daily scales at energies above 300 GeV when systematic uncertainties are included in the flux measurement. We consider three state-of-the-art theoretical models to describe the overall spectral energy distribution of the Crab Nebula. The constant B-field model cannot satisfactorily reproduce the VHE spectral measurements presented in this work, having particular difficulty reproducing the broadness of the observed IC peak. Most probably this implies that the assumption of the homogeneity of the magnetic field inside the nebula is incorrect. On the other hand, the time-dependent 1D spectral model provides a good fit of the new VHE results when considering a 80 mu G magnetic field. However, it fails to match the data when including the morphology of the nebula at lower wavelengths.
  •  
6.
  • Kirsten, Franz, 1983, et al. (författare)
  • A repeating fast radio burst source in a globular cluster
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 602:7898, s. 585-589
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast radio bursts (FRBs) are flashes of unknown physical origin1. The majority of FRBs have been seen only once, although some are known to generate multiple flashes2,3. Many models invoke magnetically powered neutron stars (magnetars) as the source of the emission4,5. Recently, the discovery6 of another repeater (FRB 20200120E) was announced, in the direction of the nearby galaxy M81, with four potential counterparts at other wavelengths6. Here we report observations that localized the FRB to a globular cluster associated with M81, where it is 2 parsecs away from the optical centre of the cluster. Globular clusters host old stellar populations, challenging FRB models that invoke young magnetars formed in a core-collapse supernova. We propose instead that FRB 20200120E originates from a highly magnetized neutron star formed either through the accretion-induced collapse of a white dwarf, or the merger of compact stars in a binary system7. Compact binaries are efficiently formed inside globular clusters, so a model invoking them could also be responsible for the observed bursts.
  •  
7.
  • Marcote, B., et al. (författare)
  • A repeating fast radio burst source localized to a nearby spiral galaxy
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 577:7789, s. 190-194
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast radio bursts (FRBs) are brief, bright, extragalactic radio flashes1,2. Their physical origin remains unknown, but dozens of possible models have been postulated3. Some FRB sources exhibit repeat bursts4–7. Although over a hundred FRB sources have been discovered8, only four have been localized and associated with a host galaxy9–12, and just one of these four is known to emit repeating FRBs9. The properties of the host galaxies, and the local environments of FRBs, could provide important clues about their physical origins. The first known repeating FRB, however, was localized to a low-metallicity, irregular dwarf galaxy, and the apparently non-repeating sources were localized to higher-metallicity, massive elliptical or star-forming galaxies, suggesting that perhaps the repeating and apparently non-repeating sources could have distinct physical origins. Here we report the precise localization of a second repeating FRB source6, FRB 180916.J0158+65, to a star-forming region in a nearby (redshift 0.0337 ± 0.0002) massive spiral galaxy, whose properties and proximity distinguish it from all known hosts. The lack of both a comparably luminous persistent radio counterpart and a high Faraday rotation measure6 further distinguish the local environment of FRB 180916.J0158+65 from that of the single previously localized repeating FRB source, FRB 121102. This suggests that repeating FRBs may have a wide range of luminosities, and originate from diverse host galaxies and local environments.
  •  
8.
  • Pleunis, Z., et al. (författare)
  • LOFAR Detection of 110-188MHz emission and frequency-dependent activity from FRB20180916B
  • 2021
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 911:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The object FRB 20180916B is a well-studied repeating fast radio burst source. Its proximity (∼150 Mpc), along with detailed studies of the bursts, has revealed many clues about its nature, including a 16.3 day periodicity in its activity. Here we report on the detection of 18 bursts using LOFAR at 110-188 MHz, by far the lowest-frequency detections of any FRB to date. Some bursts are seen down to the lowest observed frequency of 110 MHz, suggesting that their spectra extend even lower. These observations provide an order-of-magnitude stronger constraint on the optical depth due to freëCfree absorption in the source's local environment. The absence of circular polarization and nearly flat polarization angle curves are consistent with burst properties seen at 300-1700 MHz. Compared with higher frequencies, the larger burst widths (∼40-160 ms at 150 MHz) and lower linear polarization fractions are likely due to scattering. We find ∼2-3 rad m variations in the Faraday rotation measure that may be correlated with the activity cycle of the source. We compare the LOFAR burst arrival times to those of 38 previously published and 22 newly detected bursts from the uGMRT (200-450 MHz) and CHIME/FRB (400-800 MHz). Simultaneous observations show five CHIME/FRB bursts when no emission is detected by LOFAR. We find that the burst activity is systematically delayed toward lower frequencies by about 3 days from 600 to 150 MHz. We discuss these results in the context of a model in which FRB 20180916B is an interacting binary system featuring a neutron star and high-mass stellar companion.
  •  
9.
  • Scholz, P., et al. (författare)
  • Simultaneous X-Ray and Radio Observations of the Repeating Fast Radio Burst FRB similar to 180916.J0158+65
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 901:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on simultaneous radio and X-ray observations of the repeating fast radio burst source FRB 180916.J0158+65 using the Canadian Hydrogen Intensity Mapping Experiment (CHIME), Effelsberg, and Deep Space Network (DSS-14 and DSS-63) radio telescopes and the Chandra X-ray Observatory. During 33 ks of Chandra observations, we detect no radio bursts in overlapping Effelsberg or Deep Space Network observations and a single burst during CHIME/FRB source transits. We detect no X-ray events in excess of the background during the Chandra observations. These non-detections imply a 5 sigma limit of <5 x 10(-10)erg cm(-2)for the 0.5-10 keV fluence of prompt emission at the time of the radio burst and 1.3 x 10(-9)erg cm(-2)at any time during the Chandra observations. Given the host-galaxy redshift of FRB 180916.J0158+65 (z similar to 0.034), these correspond to energy limits of <1.6 x 10(45)erg and <4 x 10(45)erg, respectively. We also place a 5 sigma limit of <8 x 10(-15)erg s(-1) cm(-2)on the 0.5-10 keV absorbed flux of a persistent source at the location of FRB 180916.J0158+65. This corresponds to a luminosity limit of <2 x 10(40)erg s(-1). Using an archival set of radio bursts from FRB 180916.J0158+65, we search for prompt gamma-ray emission in Fermi/GBM data but find no significant gamma-ray bursts, thereby placing a limit of 9 x 10(-9)erg cm(-2)on the 10-100 keV fluence. We also search Fermi/LAT data for periodic modulation of the gamma-ray brightness at the 16.35 days period of radio burst activity and detect no significant modulation. We compare these deep limits to the predictions of various fast radio burst models, but conclude that similar X-ray constraints on a closer fast radio burst source would be needed to strongly constrain theory.
  •  
10.
  • Agudo, I., et al. (författare)
  • Panning for gold, but finding helium: Discovery of the ultra-stripped supernova SN 2019wxt from gravitational-wave follow-up observations
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 675
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results from multi-wavelength observations of a transient discovered during an intensive follow-up campaign of S191213g, a gravitational wave (GW) event reported by the LIGO-Virgo Collaboration as a possible binary neutron star merger in a low latency search. This search yielded SN 2019wxt, a young transient in a galaxy whose sky position (in the 80% GW contour) and distance (∼150 Mpc) were plausibly compatible with the localisation uncertainty of the GW event. Initially, the transienta's tightly constrained age, its relatively faint peak magnitude (Mi ∼ -16.7 mag), and the r-band decline rate of ∼1 mag per 5 days appeared suggestive of a compact binary merger. However, SN 2019wxt spectroscopically resembled a type Ib supernova, and analysis of the optical-near-infrared evolution rapidly led to the conclusion that while it could not be associated with S191213g, it nevertheless represented an extreme outcome of stellar evolution. By modelling the light curve, we estimated an ejecta mass of only ∼0.1 M·, with 56Ni comprising ∼20% of this. We were broadly able to reproduce its spectral evolution with a composition dominated by helium and oxygen, with trace amounts of calcium. We considered various progenitor channels that could give rise to the observed properties of SN 2019wxt and concluded that an ultra-stripped origin in a binary system is the most likely explanation. Disentangling genuine electromagnetic counterparts to GW events from transients such as SN 2019wxt soon after discovery is challenging: in a bid to characterise this level of contamination, we estimated the rate of events with a volumetric rate density comparable to that of SN 2019wxt and found that around one such event per week can occur within the typical GW localisation area of O4 alerts out to a luminosity distance of 500 Mpc, beyond which it would become fainter than the typical depth of current electromagnetic follow-up campaigns.
  •  
11.
  • Aleksic, J., et al. (författare)
  • MAGIC reveals a complex morphology within the unidentified gamma-ray source HESS J1857+026
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 571
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. HESS J1857+026 is an extended TeV gamma-ray source that was discovered by H. E. S. S. as part of its Galactic plane survey. Given its broadband spectral energy distribution and its spatial coincidence with the young energetic pulsar PSR J1856+0245, the source has been put forward as a pulsar wind nebula (PWN) candidate. MAGIC has performed follow-up observations aimed at mapping the source down to energies approaching 100 GeV in order to better understand its complex morphology. Methods. HESS J1857+026 was observed by MAGIC in 2010, yielding 29 h of good quality stereoscopic data that allowed us to map the source region in two separate ranges of energy. Results. We detected very-high-energy gamma-ray emission from HESS J1857+026 with a significance of 12 sigma above 150 GeV. The differential energy spectrum between 100 GeV and 13 TeV is described well by a power law function dN/dE = N-0(E/1TeV)(-Gamma) with N-0 = (5.37 +/- 0.44(stat) +/- 1.5(sys)) X 10(-12) (TeV-1 cm(-2) s(-1)) and Gamma = 2.16 +/- 0.07(stat) +/- 0.15(sys), which bridges the gap between the GeV emission measured by Fermi-LAT and the multi-TeV emission measured by H.E.S.S.. In addition, we present a detailed analysis of the energy-dependent morphology of this region. We couple these results with archival multiwavelength data and outline evidence in favor of a two-source scenario, whereby one source is associated with a PWN, while the other could be linked with a molecular cloud complex containing an HII region and a possible gas cavity.
  •  
12.
  • Ciroletti, M., et al. (författare)
  • FRB 150418: clues to its nature from European VLBI Network and e-MERLIN observations
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 593, s. L16-L19
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: We investigate the nature of the compact and possibly variable nuclear radio source in the centre of WISE J0716-19, the proposed host galaxy of the fast radio burst FRB 150418. Methods: We observed WISE J0716-19 at 5.0 GHz with the European VLBI Network (EVN) four times between 2016 March 16 and June 2. At three epochs, we simultaneously observed the source with e-MERLIN at the same frequency. Results: We detected a compact source in the EVN data in each epoch with a significance of up to ~8σ. The four epochs yielded consistent results within their uncertainties for the peak surface intensity and positions. The mean values for these quantities are Ipeak = (115 ± 9)μJy beam-1 and RA = 07h16m34.55496(7)s, Dec = -19°00'39.4754(8)''. The e-MERLIN data provided ~3-5σ detections at a position consistent with those of the EVN data. The emission on angular scales intermediate between the EVN and e-MERLIN is consistent with being null. The brightness temperature of the EVN core is Tb ≳ 108.5 K, close to the value previously required to explain the short-term radio variability properties of WISE J0716-19 in terms of interstellar scintillation. Conclusions: Our observations provide direct and independent evidence of a nuclear compact source in WISE J0716-19, a physical scenario without evident connection with FRB 150418. However, the EVN data do not indicate the variability observed with the VLA.
  •  
13.
  • Nimmo, K., et al. (författare)
  • Burst timescales and luminosities as links between young pulsars and fast radio bursts
  • 2022
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 6:3, s. 393-401
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast radio bursts (FRBs) are extragalactic radio flashes of unknown physical origin. Their high luminosities and short durations require extreme energy densities, such as those found in the vicinity of neutron stars and black holes. Studying the burst intensities and polarimetric properties on a wide range of timescales, from milliseconds down to nanoseconds, is key to understanding the emission mechanism. However, high-time-resolution studies of FRBs are limited by their unpredictable activity levels, available instrumentation and temporal broadening in the intervening ionized medium. Here we show that the repeating FRB 20200120E can produce isolated shots of emission as short as about 60 nanoseconds in duration, with brightness temperatures as high as 3 × 1041 K (excluding relativistic effects), comparable with ‘nano-shots’ from the Crab pulsar. Comparing both the range of timescales and luminosities, we find that FRB 20200120E observationally bridges the gap between known Galactic young pulsars and magnetars and the much more distant extragalactic FRBs. This suggests a common magnetically powered emission mechanism spanning many orders of magnitude in timescale and luminosity. In this Article, we probe a relatively unexplored region of the short-duration transient phase space; we highlight that there probably exists a population of ultrafast radio transients at nanosecond to microsecond timescales, which current FRB searches are insensitive to.
  •  
14.
  • Del Palacio, Santiago, 1990, et al. (författare)
  • Evidence for non-thermal X-ray emission from the double Wolf-Rayet colliding-wind binary Apep
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 672
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Massive colliding-wind binaries (CWBs) can be non-thermal sources. The emission produced in their wind-collision region (WCR) encodes information of both the shock properties and the relativistic electrons accelerated in them. The recently discovered system Apep, a unique massive system hosting two Wolf-Rayet stars, is the most powerful synchrotron radio emitter among the known CWBs. It is an exciting candidate in which to investigate the non-thermal processes associated with stellar wind shocks. Aims. We intend to break the degeneracy between the relativistic particle population and the magnetic field strength in the WCR of Apep by probing its hard X-ray spectrum, where inverse-Compton (IC) emission is expected to dominate. Methods. We observed Apep with NuSTAR for 60 ks and combined this with a reanalysis of a deep archival XMM-Newton observation to better constrain the X-ray spectrum. We used a non-thermal emission model to derive physical parameters from the results. Results. We detect hard X-ray emission consistent with a power-law component from Apep. This is compatible with IC emission produced in the WCR for a magnetic field of ≈ 105-190 mG, corresponding to a magnetic-to-thermal pressure ratio in the shocks of ≈ 0.007-0.021, and a fraction of ∼1.5 × 10-4 of the total wind kinetic power being transferred to relativistic electrons. Conclusions. The non-thermal emission from a CWB is detected for the first time in radio and at high energies. This allows us to derive the most robust constraints so far for the particle acceleration efficiency and magnetic field intensity in a CWB, reducing the typical uncertainty of a few orders of magnitude to just within a factor of a few. This constitutes an important step forward in our characterisation of the physical properties of CWBs.
  •  
15.
  • Ghirlanda, G., et al. (författare)
  • Compact radio emission indicates a structured jet was produced by a binary neutron star merger
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 363:6430, s. 968-971
  • Tidskriftsartikel (refereegranskat)abstract
    • The binary neutron star merger event GW170817 was detected through both electromagnetic radiation and gravitational waves. Its afterglow emission may have been produced by either a narrow relativistic jet or an isotropic outflow. High-spatial-resolution measurements of the source size and displacement can discriminate between these scenarios. We present very-long-baseline interferometry observations, performed 207.4 days after the merger by using a global network of 32 radio telescopes. The apparent source size is constrained to be smaller than 2.5 milli-arc seconds at the 90% confidence level. This excludes the isotropic outflow scenario, which would have produced a larger apparent size, indicating that GW170817 produced a structured relativistic jet. Our rate calculations show that at least 10% of neutron star mergers produce such a jet.
  •  
16.
  • Giroletti, M., et al. (författare)
  • Filming the evolution of symbiotic novae with VLBI: The 2021 explosion of RS Oph
  • 2023
  • Ingår i: Proceedings of Science. - 1824-8039. ; 428
  • Konferensbidrag (refereegranskat)abstract
    • Fifteen years after its previous outburst, the symbiotic recurrent nova RS Oph exploded again on 2021 Aug 8th, its first outburst during the Fermi era. In symbiotic novae, the material ejected from the surface of the white dwarf (WD) after the thermonuclear runaway drives a strong shock through the dense circumstellar gas produced by the red giant (RG) wind. This nova is a perfect real-Time laboratory for studying physical processes as diverse as accretion, thermonuclear explosions, shock dynamics and particle acceleration; in many ways it is like a supernova remnant on fast forward. The experience of its previous outburst and that of 2010 for V407 (the symbiotic nova that has been extensively observed during the Fermi era), indicates that a large sensitivity and a broad range of baseline lengths are necessary to follow its evolution over a period of several weeks. This would provide unique constraints on major outstanding problems, including the emission mechanisms, the physical processes at work, the presence and location of shock acceleration, the geometry of the system, and the density of the RG wind. We present preliminary results from the EVN+e-MERLIN observations carried out on weeks/months time scales after the August explosion.
  •  
17.
  • Hewitt, Dante M., et al. (författare)
  • Milliarcsecond localization of the hyperactive repeating FRB 20220912A
  • 2024
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 529:2, s. 1814-1826
  • Tidskriftsartikel (refereegranskat)abstract
    • We present very long-baseline interferometry (VLBI) observations of the hyperactive repeating FRB 20220912A using the European VLBI Network (EVN) outside of regular observing sessions (EVN-Lite). We detected 150 bursts from FRB 20220912A over two observing epochs in 2022 October. Combining the burst data allows us to localize FRB 20220912A to a precision of a few milliarcseconds, corresponding to a transverse scale of less than 10 pc at the distance of the source. This precise localization shows that FRB 20220912A lies closer to the centre of its host galaxy than previously found, although still significantly offset from the host galaxy's nucleus. On arcsecond scales, FRB 20220912A is coincident with a persistent continuum radio source known from archival observations; however, we find no compact persistent emission on milliarcsecond scales. The 5σ upper limit on the presence of such a compact persistent radio source is 120 μJy, corresponding to a luminosity limit of (D/362.4 Mpc)erg s-1 Hz-1. The persistent radio emission is thus likely to be from star formation in the host galaxy. This is in contrast to some other active FRBs, such as FRB 20121102A and FRB 20190520B.
  •  
18.
  • Marcote, B., et al. (författare)
  • The origin of Fast Radio Bursts, still an open question
  • 2016
  • Ingår i: Proceedings of the 12th Scientific Meeting of the Spanish Astronomical Society - Highlights of Spanish Astrophysics IX, SEA 2016.
  • Konferensbidrag (refereegranskat)abstract
    • FRB 150418 is the first Fast Radio Burst (FRB) with a proposed counterpart. Keane et al. (2016) claimed that the galaxy WISE J0716-19 is the host of this event. Such association would provide extremely important clues about the possible extragalactic origin of the FRBs. It is still a mystery what kind of events produces the FRBs. We observed the proposed host galaxy with the European VLBI Network (EVN) during four epochs at 5 GHz, revealing a compact and persistent radio source located in the center of the galaxy. These data, together with contemporaneous observations, strongly support the presence of an active galactic nuclei (AGN) in the galaxy with variability on short timescales due to refractive scintillation. Therefore, WISE J0716-19 would not be related with FRB 150418.
  •  
19.
  • Munari, U., et al. (författare)
  • Radio interferometric imaging of RS Oph bipolar ejecta for the 2021 nova outburst
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • The recurrent nova and symbiotic binary RS Oph erupted again in August 2021 for its eighth known outburst. We observed RS Oph 34 days after the outburst at 5 GHz with the European VLBI Network (EVN). The radio image is elongated over the east-west direction for a total extension of about 90 mas (or about 240 AU at the Gaia DR3 distance d = 2.68-0.15+0.17 kpc), and shows a bright and compact central component coincident with the Gaia astrometric position, and two lobes east and west of it, expanding perpendicular to the orbital plane. By comparing with the evolution of emission-line profiles on optical spectra, we found the leading edge of the lobes to be expanding at ~7550 km s-1, and i = 54 as the orbital inclination of the binary. The 2021 radio structure is remarkably similar to that observed following the 2006 eruption. The obscuring role of the density enhancement on the orbital plane (DEOP) is discussed in connection to the time-dependent visibility of the receding lobe in the background to the DEOP, and the origin of the triple-peaked profiles is traced to the ring structure formed by the nova ejecta impacting the DEOP.
  •  
20.
  • Nimmo, K., et al. (författare)
  • A burst storm from the repeating FRB 20200120E in an M81 globular cluster
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 520:2, s. 2281-2305
  • Tidskriftsartikel (refereegranskat)abstract
    • The repeating fast radio burst (FRB) source FRB 20200120E is exceptional because of its proximity and association with a globular cluster. Here we report 60 bursts detected with the Effelsberg telescope at 1.4 GHz. We observe large variations in the burst rate, and report the first FRB 20200120E 'burst storm', where the source suddenly became active and 53 bursts (fluence ≥0.04 Jy ms) occurred within only 40 min. We find no strict periodicity in the burst arrival times, nor any evidence for periodicity in the source's activity between observations. The burst storm shows a steep energy distribution (power-law index α = 2.39 ± 0.12) and a bimodal wait-time distribution, with log-normal means of 0.94+0.07−0.06 s and 23.61+3.06−2.71 s. We attribute these wait-time distribution peaks to a characteristic event time-scale and pseudo-Poisson burst rate, respectively. The secondary wait-time peak at ∼1 s is ∼50 × longer than the ∼24 ms time-scale seen for both FRB 20121102A and FRB 20201124A - potentially indicating a larger emission region, or slower burst propagation. FRB 20200120E shows order-of-magnitude lower burst durations and luminosities compared with FRB 20121102A and FRB 20201124A. Lastly, in contrast to FRB 20121102A, which has observed dispersion measure (DM) variations of ΔDM > 1 pc cm−3 on month-to-year time-scales, we determine that FRB 20200120E's DM has remained stable (ΔDM < 0.15 pc cm−3) over >10 months. Overall, the observational characteristics of FRB 20200120E deviate quantitatively from other active repeaters, but it is unclear whether it is qualitatively a different type of source.
  •  
21.
  • Nimmo, K., et al. (författare)
  • Highly polarized microstructure from the repeating FRB 20180916B
  • 2021
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 5:6, s. 594-603
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast radio bursts (FRBs) are bright, coherent, short-duration radio transients of as-yet unknown extragalactic origin. FRBs exhibit a variety of spectral, temporal and polarimetric properties that can unveil clues into their emission physics and propagation effects in the local medium. Here, we present the high-time-resolution (down to 1 mu s) polarimetric properties of four 1.7 GHz bursts from the repeating FRB 20180916B, which were detected in voltage data during observations with the European Very Long Baseline Interferometry Network. We observe a range of emission timescales that spans three orders of magnitude, with the shortest component width reaching 3-4 mu s (below which we are limited by scattering). We demonstrate that all four bursts are highly linearly polarized (greater than or similar to 80%), show no evidence of significant circular polarization (less than or similar to 15%), and exhibit a constant polarization position angle (PPA) during and between bursts. On short timescales (less than or similar to 100 mu s), however, there appear to be subtle PPA variations (of a few degrees) across the burst profiles. These observational results are most naturally explained in an FRB model in which the emission is magnetospheric in origin, in contrast to models in which the emission originates at larger distances in a relativistic shock. High-time-resolution observations of the repeating fast radio burst source FRB 20180916B reveal changes to the polarization properties of the emission on timescales of a few microseconds, indicating an origin in the source magnetosphere.
  •  
22.
  • Nimmo, K., et al. (författare)
  • Milliarcsecond Localization of the Repeating FRB 20201124A
  • 2022
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 927:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Very long baseline interferometric (VLBI) localizations of repeating fast radio bursts (FRBs) have demonstrated a diversity of local environments: from nearby star-forming regions to globular clusters. Here we report the VLBI localization of FRB 20201124A using an ad hoc array of dishes that also participate in the European VLBI Network (EVN). In our campaign, we detected 18 bursts from FRB 20201124A at two separate epochs. By combining the visibilities from both epochs, we were able to localize FRB 20201124A with a 1 sigma uncertainty of 2.7 mas. We use the relatively large burst sample to investigate astrometric accuracy and find that for greater than or similar to 20 baselines (greater than or similar to 7 dishes) we can robustly reach milliarcsecond precision even using single-burst data sets. Subarcsecond precision is still possible for single bursts, even when only similar to 6 baselines (four dishes) are available. In such cases, the limited uv coverage for individual bursts results in very high side-lobe levels. Thus, in addition to the peak position from the dirty map, we also explore smoothing the structure in the dirty map by fitting Gaussian functions to the fringe pattern in order to constrain individual burst positions, which we find to be more reliable. Our VLBI work places FRB 20201124A 710 +/- 30 mas (1 sigma uncertainty) from the optical center of the host galaxy, consistent with originating from within the recently discovered extended radio structure associated with star formation in the host galaxy. Future high-resolution optical observations, e.g., with Hubble Space Telescope, can determine the proximity of FRB 20201124A's position to nearby knots of star formation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-22 av 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy