SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Marcq Emmanuel) "

Sökning: WFRF:(Marcq Emmanuel)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Salvador, Arnaud, et al. (författare)
  • Magma Ocean, Water, and the Early Atmosphere of Venus
  • 2023
  • Ingår i: Space Science Reviews. - : Springer Nature. - 0038-6308 .- 1572-9672. ; 219:7
  • Forskningsöversikt (refereegranskat)abstract
    • The current state and surface conditions of the Earth and its twin planet Venus are drastically different. Whether these differences are directly inherited from the earliest stages of planetary evolution, when the interior was molten, or arose later during the long-term evolution is still unclear. Yet, it is clear that water, its abundance, state, and distribution between the different planetary reservoirs, which are intimately related to the solidification and outgassing of the early magma ocean, are key components regarding past and present-day habitability, planetary evolution, and the different pathways leading to various surface conditions.In this chapter we start by reviewing the outcomes of the accretion sequence, with particular emphasis on the sources and timing of water delivery in light of available constraints, and the initial thermal state of Venus at the end of the main accretion. Then, we detail the processes at play during the early thermo-chemical evolution of molten terrestrial planets, and how they can affect the abundance and distribution of water within the different planetary reservoirs. Namely, we focus on the magma ocean cooling, solidification, and concurrent formation of the outgassed atmosphere. Accounting for the possible range of parameters for early Venus and based on the mechanisms and feedbacks described, we provide an overview of the likely evolutionary pathways leading to diverse surface conditions, from a temperate to a hellish early Venus. The implications of the resulting surface conditions and habitability are discussed in the context of the subsequent long-term interior and atmospheric evolution. Future research directions and observations are proposed to constrain the different scenarios in order to reconcile Venus' early evolution with its current state, while deciphering which path it followed.
  •  
2.
  • Widemann, Thomas, et al. (författare)
  • Venus Evolution Through Time : Key Science Questions, Selected Mission Concepts and Future Investigations
  • 2023
  • Ingår i: Space Science Reviews. - : SPRINGER. - 0038-6308 .- 1572-9672. ; 219:7
  • Forskningsöversikt (refereegranskat)abstract
    • In this work we discuss various selected mission concepts addressing Venus evolution through time. More specifically, we address investigations and payload instrument concepts supporting scientific goals and open questions presented in the companion articles of this volume. Also included are their related investigations (observations & modeling) and discussion of which measurements and future data products are needed to better constrain Venus' atmosphere, climate, surface, interior and habitability evolution through time. A new fleet of Venus missions has been selected, and new mission concepts will continue to be considered for future selections. Missions under development include radar-equipped ESA-led EnVision M5 orbiter mission (European Space Agency 2021), NASA-JPL's VERITAS orbiter mission (Smrekar et al. 2022a), NASA-GSFC's DAVINCI entry probe/flyby mission (Garvin et al. 2022a). The data acquired with the VERITAS, DAVINCI, and EnVision from the end of this decade will fundamentally improve our understanding of the planet's long term history, current activity and evolutionary path. We further describe future mission concepts and measurements beyond the current framework of selected missions, as well as the synergies between these mission concepts, ground-based and space-based observatories and facilities, laboratory measurements, and future algorithmic or modeling activities that pave the way for the development of a Venus program that extends into the 2040s (Wilson et al. 2022).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy