SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mastepanov Mikhail) "

Sökning: WFRF:(Mastepanov Mikhail)

  • Resultat 1-25 av 42
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Backstrand, K., et al. (författare)
  • Total hydrocarbon flux dynamics at a subarctic mire in northern Sweden
  • 2008
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 113, s. G03026-
  • Tidskriftsartikel (refereegranskat)abstract
    • This is a study of the spatial and temporal variability of total hydrocarbon (THC) emissions from vegetation and soil at a subarctic mire, northern Sweden. THCs include methane (CH4) and nonmethane volatile organic compounds (NMVOCs), both of which are atmospherically important trace gases and constitute a significant proportion of the carbon exchange between biosphere and atmosphere. Reliable characterization of the magnitude and the dynamics of the THC fluxes from high latitude peatlands are important when considering to what extent trace gas emissions from such ecosystems may change and feed back on climate regulation as a result of warmer climate and melting permafrost. High frequency measurements of THC and carbon dioxide (CO2) were conducted during four sequential growing seasons in three localities representing the trophic range of plant communities at the mire. The magnitude of the THC flux followed the moisture gradient with increasing emissions from a dry Palsa site (2.2 +/- 0.1 mgC m(-2) d(-1)), to a wet intermediate melt feature with Sphagnum spp. (28 +/- 0.3 mgC m(-2) d(-1)) and highest emissions from a wet Eriophorum spp. site (122 +/- 1.4 mgC m(-2) d(-1)) (overall mean +/- 1 SE, n = 2254, 2231 and 2137). At the Palsa site, daytime THC flux was most strongly related to air temperature while daytime THC emissions at the Sphagnum site had a stronger relation to ground temperature. THC emissions at both the wet sites were correlated to net ecosystem exchange of CO2. An overall spatial correlation indicated that areas with highly productive vegetation communities also had high THC emission potential.
  •  
2.
  • Bäckstrand, Kristina, et al. (författare)
  • Annual carbon gas budget for a subarctic peatland, northern Sweden
  • 2010
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 7:1, s. 95-108
  • Tidskriftsartikel (refereegranskat)abstract
    • Temperatures in the Arctic regions are rising, thawing permafrost and exposing previously stable soil organic carbon (OC) to decomposition. This can result in northern latitude soils, which have accumulated large amounts of OC potentially shifting from atmospheric C sinks to C sources with positive feedback on climate warming. In this paper, we estimate the annual net C gas balance (NCB) of the subarctic mire Stordalen, based on automatic chamber measurements of CO2 and total hydrocarbon (THC; CH4 and NMVOCs) exchange. We studied the dominant vegetation communities with different moisture and permafrost characteristics; a dry Palsa underlain by permafrost, an intermediate thaw site with Sphagnum spp. and a wet site with Eriophorum spp. where the soil thaws completely. Whole year accumulated fluxes of CO2 were estimated to 29.7, −35.3 and −34.9 gC m−2 respectively for the Palsa, Sphagnum and Eriophorum sites (positive flux indicates an addition of C to the atmospheric pool). The corresponding annual THC emissions were 0.5, 6.2 and 31.8 gC m−2 for the same sites. Therefore, the NCB for each of the sites was 30.2, −29.1 and −3.1 gC m−2 respectively for the Palsa, Sphagnum and Eriophorum site. On average, the whole mire was a CO2 sink of 2.6 gC m−2 and a THC source of 6.4 gC m−2 over a year. Consequently, the mire was a net source of C to the atmosphere by 3.9 gC m−2 (based on area weighted estimates for each of the three plant communities). Early and late snow season efflux of CO2 and THC emphasize the importance of winter measurements for complete annual C budgets. Decadal vegetation changes at Stordalen indicate that both the productivity and the THC emissions increased between 1970 and 2000. Considering the GWP100 of CH4, the net radiative forcing on climate increased 21% over the same time. In conclusion, reduced C compounds in these environments have high importance for both the annual C balance and climate.
  •  
3.
  • Christensen, Torben, et al. (författare)
  • A catchment-scale carbon and greenhouse gas budget of a subartic landscape
  • 2007
  • Ingår i: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Science. - : The Royal Society. - 1364-503X .- 1471-2962. ; 365:1856, s. 1643-1656
  • Tidskriftsartikel (refereegranskat)abstract
    • This is the first attempt to budget average current annual carbon (C) and associated greenhouse gas (GHG) exchanges and transfers in a subarctic landscape, the Lake Torneträsk catchment in northern Sweden. This is a heterogeneous area consisting of almost 4000 km2 of mixed heath, birch and pine forest, and mires, lakes and alpine ecosystems. The magnitudes of atmospheric exchange of carbon in the form of the GHGs, CO2 and CH4 in these various ecosystems differ significantly, ranging from little or no flux in barren ecosystems over a small CO2 sink function and low rates of CH4 exchange in the heaths to significant CO2 uptake in the forests and also large emissions of CH4 from the mires and small lakes. The overall catchment budget, given the size distribution of the individual ecosystem types and a first approximation of run-off as dissolved organic carbon, reveals a landscape currently with a significant sink capacity for atmospheric CO2. This sink capacity is, however, extremely sensitive to environmental changes, particularly those that affect the birch forest ecosystem. Climatic drying or wetting and episodic events such as insect outbreaks may cause significant changes in the sink function. Changes in the sources of CH4 through increased permafrost melting may also easily change the sign of the current radiative forcing, due to the stronger impact per gram of CH4 relative to CO2. Hence, to access impacts on climate, the atmospheric C balance alone has to be weighed in a radiative forcing perspective. When considering the emissions of CH4 from the mires and lakes as CO2 equivalents, the Torneträsk catchment is currently a smaller sink of radiative forcing, but it can still be estimated as representing the equivalent of approximately 14 000 average Swedish inhabitants' emissions of CO2. This can be compared with the carbon emissions of less than 200 people who live permanently in the catchment, although this comparison disregards substantial emissions from the non-Swedish tourism and transportation activities.
  •  
4.
  • Christensen, Torben, et al. (författare)
  • Biotic controls on CO2 and CH4 exchange in wetlands - a closed environment study
  • 2003
  • Ingår i: Biogeochemistry. - 0168-2563 .- 1573-515X. ; 64:3, s. 337-354
  • Tidskriftsartikel (refereegranskat)abstract
    • Wetlands are significant sources of the important greenhouse gas CH4. Here we explore the use of an experimental system developed for the determination of continuous fluxes of CO2 and CH4 in closed ecosystem monoliths including the capture of (CO2)-C-14 and (CH4)-C-14 following pulse labelling with (CO2)-C-14. We show that, in the ecosystem studied, ebullition (bubble emission) may account for 18 to 50% of the total CH4 emission, representing fluxes that have been difficult to estimate accurately in the past. Furthermore, using plant removal and C-14 labelling techniques, we use the system to detail the direct influence of vascular plants on CH4 emission. This influence is observed to be dependent on the amount of vascular plants present. The results that may be produced using the presented experimental set-up have implications for an improved understanding of wetland ecosystem/atmosphere interactions, including possible feedback effects on climate change. In recent years much attention has been devoted to ascertaining and subsequently using the relationship between net ecosystem productivity and CH4 emission as a basis for extrapolation of fluxes across large areas. The experimental system presented may be used to study the complex relationship between vascular plants and CH4 emission and here we show examples of how this may vary considerably in nature between and even within ecosystems.
  •  
5.
  • Christensen, Torben, et al. (författare)
  • Factors controlling large scale variations in methane emissions from wetlands
  • 2003
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 30:7
  • Tidskriftsartikel (refereegranskat)abstract
    • [1] Global wetlands are, at estimate ranging 115-237 Tg CH4/yr, the largest single atmospheric source of the greenhouse gas methane (CH4). We present a dataset on CH4 flux rates totaling 12 measurement years at sites from Greenland, Iceland, Scandinavia and Siberia. We find that temperature and microbial substrate availability (expressed as the organic acid concentration in peat water) combined explain almost 100% of the variations in mean annual CH4 emissions. The temperature sensitivity of the CH4 emissions shown suggests a feedback mechanism on climate change that could validate incorporation in further developments of global circulation models.
  •  
6.
  • Christensen, Torben, et al. (författare)
  • Monitoring the multi year carbon balance of a subarctic palsa mire with micrometeorological techniques
  • 2012
  • Ingår i: Ambio. - : Springer Science and Business Media LLC. - 0044-7447 .- 1654-7209. ; 41, s. 207-217
  • Tidskriftsartikel (refereegranskat)abstract
    • This article reports a dataset on 8 years of monitoring carbon fluxes in a subarctic palsa mire based on micrometeorological eddy covariance measurements. The mire is a complex with wet minerotrophic areas and elevated dry palsa as well as intermediate sub-ecosystems. The measurements document primarily the emission originating from the wet parts of the mire dominated by a rather homogenous cover of Eriophorum angustifolium. The CO2/CH4 flux measurements performed during the years 2001-2008 showed that the areas represented in the measurements were a relatively stable sink of carbon with an average annual rate of uptake amounting to on average -46 g C m(-2) y(-1) including an equally stable loss through CH4 emissions (18-22 g CH4-C m(-2) y(-1)). This consistent carbon sink combined with substantial CH4 emissions is most likely what is to be expected as the permafrost under palsa mires degrades in response to climate warming.
  •  
7.
  • Christensen, Torben, et al. (författare)
  • Thawing sub-arctic permafrost : Effects on vegetation and methane emissions
  • 2004
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 31:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Ecosystems along the 0degreesC mean annual isotherm are arguably among the most sensitive to changing climate and mires in these regions emit significant amounts of the important greenhouse gas methane (CH4) to the atmosphere. These CH4 emissions are intimately related to temperature and hydrology, and alterations in permafrost coverage, which affect both of those, could have dramatic impacts on the emissions. Using a variety of data and information sources from the same region in subarctic Sweden we show that mire ecosystems are subject to dramatic recent changes in the distribution of permafrost and vegetation. These changes are most likely caused by a warming, which has been observed during recent decades. A detailed study of one mire show that the permafrost and vegetation changes have been associated with increases in landscape scale CH4 emissions in the range of 22-66% over the period 1970 to 2000.
  •  
8.
  • Heliasz, Michal, et al. (författare)
  • Quantification of C uptake in subarctic birch forest after setback by an extreme insect outbreak
  • 2011
  • Ingår i: Geophysical Research Letters. - 1944-8007. ; 38
  • Tidskriftsartikel (refereegranskat)abstract
    • The carbon dynamics of northern natural ecosystems contribute significantly to the global carbon balance. Periodic disturbances to these dynamics include insect herbivory. Larvae of autumn and winter moths (Epirrita autumnata and Operophtera brumata) defoliate mountain birch (Betula pubescens) forests in northern Scandinavia cyclically every 9-10 years and occasionally (50-150 years) extreme population densities can threaten ecosystem stability. Here we report impacts on C balance following a 2004 outbreak where a widespread area of Lake Tornetrask catchment was severely defoliated. We show that in the growing season of 2004 the forest was a much smaller net sink of C than in a reference year, most likely due to lower gross photosynthesis. Ecosystem respiration in 2004 was smaller and less sensitive to air temperature at nighttime relative to 2006. The difference in growing season uptake between an insect affected and non-affected year over the 316 km(2) area is in the order of 29 x 10(3) tonnes C equal to a reduction of the sink strength by 89%. Citation: Heliasz, M., T. Johansson, A. Lindroth, M. Molder, M. Mastepanov, T. Friborg, T. V. Callaghan, and T. R. Christensen (2011), Quantification of C uptake in subarctic birch forest after setback by an extreme insect outbreak, Geophys. Res. Lett., 38, L01704, doi:10.1029/2010GL044733.
  •  
9.
  •  
10.
  • Huang, Xiao, et al. (författare)
  • The MYR Project (2018-21): Climate smart management practices on Norwegian organic soils
  • 2019
  • Ingår i: Geophysical Research Abstracts Vol. 21, EGU2019-7918, 2019.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Cultivated organic soils account for∼7% of Norway’s agricultural land area, and they are estimated to be a significant source of greenhouse gas (GHG) emissions. The project ‘Climate smart management practices on Norwegian organic soils’ (MYR), commissioned by the Research Council of Norway (decision no. 281109), aims to evaluate GHG (e.g. carbon dioxide, methane and nitrous oxide) emissions and impacts on biomass productivity from three land use types (cultivated, abandoned and restored) on organic soils. At the cultivated sites, impacts of drainage depth and management intensity will be measured. We established experimental sites in Norway covering a broad range of climate and management regimes, which will produce observational data in high spatio-temporal resolution during 2019-2021. Using state-of-the-art modelling techniques, MYR aims to predict the potential GHG mitigation under different scenarios. Four models (BASGRA, DNDC, Coup and ECOSSE) will be further developed according to the soil properties, and then used independently in simulating biogeochemical processes and biomass dynamics in the different land uses. Robust parameterization schemes for each model will be based in the observational data from the project for both soil and crop combinations. Eventually, a multi-model ensemble prediction will be carried out to provide scenario analyses by 2030 and 2050. By integrating experimental results and modelling, the project aims at generating useful information for recommendations on environment-friendly use of Norwegian peatlands.
  •  
11.
  • Illeris, L, et al. (författare)
  • Moisture effects on temperature sensitivity of CO2 exchange in a subarctic heath ecosystem
  • 2004
  • Ingår i: Biogeochemistry. - : Springer Science and Business Media LLC. - 1573-515X .- 0168-2563. ; 70:3, s. 315-330
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon fluxes between natural ecosystems and the atmosphere have received increased attention in recent years due to the impact they have on climate. In order to investigate independently how soil moisture and temperature control carbon fluxes into and out of a dry subarctic dwarf shrub dominated heath, monoliths containing soil and plants were incubated at three different moisture levels and subjected to four different temperature levels between 7 and 20degreesC. Ecosystem CO2 exchange was monitored continuously day and night during the 16 to 18 days that each of three experiments lasted. Additionally, the carbon allocation pattern of the plants was investigated by labelling monoliths with (CO2)-C-14 followed by harvest of above and below ground plant parts. The results revealed that the three different soil moisture levels caused distinctly differing levels Of CO2 fluxes. Also, both carbon fixation calculated as gross ecosystem production (GEP) and carbon release measured as ecosystem respiration (ER) increased with increasing temperatures, with ER increasing faster than GER Hence, short term carbon loss from the ecosystem accelerated with raised temperatures. Temperature sensitivity of the ecosystem was dependent on the soil moisture level, shown by differing Q(10) values of both GEP and ER at different soil moisture levels. It is therefore highly important to take soil moisture levels into consideration when evaluating responses of ecosystem carbon balance to changes in temperature. The greatest C fixation took place via the two most dominant species of the ecosystem, Vaccinium uliginosum and Empetrum hermaphroditum, with the former being responsible for the different size of C fixation at the three moisture levels.
  •  
12.
  • Jackowicz-Korczynski, Marcin, et al. (författare)
  • Annual cycle of methane emissions from a subarctic peatland
  • 2010
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 115, s. G02009-
  • Tidskriftsartikel (refereegranskat)abstract
    • Although much attention in recent years has been devoted to methane (CH4) emissions from northern wetlands, measurement based data sets providing full annual budgets are still limited in number. This study was designed to help fill the gap of year-round measurements of CH4 emissions from subarctic mires. We report continuous eddy correlation CH4 flux measurements made during 2006 and 2007 over the Stordalen mire in subarctic Sweden (68 degrees 20'N, 19 degrees 03'E, altitude 351 m) using a cryocooled tunable diode laser. The landscape-scale CH4 fluxes originated mainly from the permafrost free wet parts of the mire dominated by tall graminoid vegetation. The midseason average CH4 emission mean was 6.2 +/- 2.6 mg m(-2) h(-1). A detailed footprint analysis indicates an additional strong influence on the flux by the nearby shallow Lake Villasjon (0.17 km(2), maximum depth 1.3 m). A stable bimodal distribution of wind flow from either the east or the west allowed separating the lake and mire vegetation signals. The midseason lake emission rates were as high as 12.3 +/- 3.3 mg m(-2) h(-1). Documented CH4 fluxes are similar to results obtained by automatic chamber technique and higher than manual chamber measurements made in the wet minerotrophic section dominated by Eriophorum angustifolium. The high fluxes observed from this vegetation type are significant because the areal distribution of this source in the mire is expanding due to ongoing thawing of the permafrost. A simple peat temperature relationship with CH4 emissions was used to fill data gaps to construct a complete annual budget of CH4 fluxes over the studied area. The calculated annual CH4 emissions in 2006 and 2007 equaled 24.5 and 29.5 g CH4 m(-2) yr(-1), respectively. The summer season CH4 emissions dominated (65%) the annual flux, with the shoulder seasons of spring and autumn significant (25%) and a minor flux from the winter (10%).
  •  
13.
  • Johansson, T, et al. (författare)
  • Decadal vegetation changes in a northern peatland, greenhouse gas fluxes and net radiative forcing
  • 2006
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 12:12, s. 2352-2369
  • Tidskriftsartikel (refereegranskat)abstract
    • Thawing permafrost in the sub-Arctic has implications for the physical stability and biological dynamics of peatland ecosystems. This study provides an analysis of how permafrost thawing and subsequent vegetation changes in a sub-Arctic Swedish mire have changed the net exchange of greenhouse gases, carbon dioxide (CO2) and CH4 over the past three decades. Images of the mire (ca. 17 ha) and surroundings taken with film sensitive in the visible and the near infrared portion of the spectrum, [i.e. colour infrared (CIR) aerial photographs from 1970 and 2000] were used. The results show that during this period the area covered by hummock vegetation decreased by more than 11% and became replaced by wet-growing plant communities. The overall net uptake of C in the vegetation and the release of C by heterotrophic respiration might have increased resulting in increases in both the growing season atmospheric CO2 sink function with about 16% and the CH4 emissions with 22%. Calculating the flux as CO2 equivalents show that the mire in 2000 has a 47% greater radiative forcing on the atmosphere using a 100-year time horizon. Northern peatlands in areas with thawing sporadic or discontinuous permafrost are likely to act as larger greenhouse gas sources over the growing season today than a few decades ago because of increased CH4 emissions.
  •  
14.
  • Johnson, Sarah Stewart, et al. (författare)
  • Ancient bacteria show evidence of DNA repair
  • 2007
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 104:36, s. 14401-14405
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent claims of cultivable ancient bacteria within sealed environments highlight our limited understanding of the mechanisms behind long-term cell survival. It remains unclear how dormancy, a favored explanation for extended cellular persistence, can cope with spontaneous genomic decay over geological timescales. There has been no direct evidence in ancient microbes for the most likely mechanism, active DNA repair, or for the metabolic activity necessary to sustain it. In this paper, we couple PCR and enzymatic treatment of DNA with direct respiration measurements to investigate long-term survival of bacteria sealed in frozen conditions for up to one million years. Our results show evidence of bacterial survival in samples up to half a million years in age, making this the oldest independently authenticated DNA to date obtained from viable cells. Additionally, we find strong evidence that this long-term survival is closely tied to cellular metabolic activity and DNA repair that over time proves to be superior to dormancy as a mechanism in sustaining bacteria viability.
  •  
15.
  • López-Blanco, Efrén, et al. (författare)
  • Multi-year data-model evaluation reveals the importance of nutrient availability over climate in arctic ecosystem C dynamics
  • 2020
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9318 .- 1748-9326. ; 15:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic tundra is a globally important store for carbon (C). However, there is a lack of reference sites characterising C exchange dynamics across annual cycles. Based on the Greenland Ecosystem Monitoring (GEM) programme, here we present 9-11 years of flux and ecosystem data across the period 2008-2018 from two wetland sites in Greenland: Zackenberg (74°N) and Kobbefjord (64°N). The Zackenberg fen was a strong C sink despite its higher latitude and shorter growing seasons compared to the Kobbefjord fen. On average the ecosystem in Zackenberg took up ∼-50 g C m-2 yr-1 (range of +21 to-90 g C m-2 yr-1), more than twice that of Kobbefjord (mean ∼-18 g C m-2 yr-1, and range of +41 to-41 g C m-2 yr-1). The larger net carbon sequestration in Zackenberg fen was associated with higher leaf nitrogen (71%), leaf area index (140%), and plant quality (i.e. C:N ratio; 36%). Additional evidence from in-situ measurements includes 3 times higher levels of dissolved organic carbon in soils and 5 times more available plant nutrients, including dissolved organic nitrogen (N) and nitrates, in Zackenberg. Simulations using the soil-plant-atmosphere ecosystem model showed that Zackenberg's stronger CO2 sink could be related to measured differences in plant nutrients, and their effects on photosynthesis and respiration. The model explained 69% of the variability of net ecosystem exchange of CO2, 80% for photosynthesis and 71% for respiration over 11 years at Zackenberg, similar to previous results at Kobbefjord (73%, 73%, and 50%, respectively, over 8 years). We conclude that growing season limitations of plant phenology on net C uptake have been more than counterbalanced by the increased leaf nutrient content at the Zackenberg site.
  •  
16.
  • Lund, Magnus, et al. (författare)
  • Effects of N and P fertilization on the greenhouse gas exchange in two northern peatlands with contrasting N deposition rates
  • 2009
  • Ingår i: Biogeosciences. - 1726-4189. ; 6:10, s. 2135-2144
  • Tidskriftsartikel (refereegranskat)abstract
    • Peatlands are important ecosystems in the context of biospheric feedback to climate change, due to the large storage of organic C in peatland soils. Nitrogen deposition and increased nutrient availability in soils following climate warming may cause changes in these ecosystems affecting greenhouse gas exchange. We have conducted an N and P fertilization experiment in two Swedish bogs subjected to high and low background N deposition, and measured the exchange of CO2, CH4 and N2O using the closed chamber technique. During the second year of fertilization, both gross primary production and ecosystem respiration were significantly increased by N addition in the northernmost site where background N deposition is low, while gross primary production was stimulated by P addition in the southern high N deposition site. In addition, a short-term response in respiration was seen following fertilization in both sites, probably associated with rapid growth of nutrient-limited soil microorganisms. No treatment effect was seen on the CH4 exchange, while N2O emission peaks were detected in N fertilized plots indicating the importance of taking N2O into consideration under increased N availability. In a longer term, increased nutrient availability will cause changes in plant composition, which will further act to regulate the peatland greenhouse gas exchange.
  •  
17.
  • Mastepanov, Mikhail, et al. (författare)
  • Bimembrane diffusion probe for continuous recording of dissolved and entrapped bubble gas concentrations in peat
  • 2008
  • Ingår i: Soil Biology & Biochemistry. - : Elsevier BV. - 0038-0717. ; 40:12, s. 2992-3003
  • Tidskriftsartikel (refereegranskat)abstract
    • Peatlands are significant sources of the important greenhouse gas CH4 and generally known as sinks for atmospheric CO2 through peat accumulation. Accurate measurements of the subsurface concentrations of these gases are of pivotal importance for experimental studies improving our understanding of the dynamics and controls on the exchanges of these gases between peat soils and the atmosphere. In this paper we first briefly outline examples of different probe-based techniques for the determination of subsurface gas concentrations and thereafter we document the development and testing of two different membrane probe systems. Finally we discuss a few applications of the probes and show some results obtained by testing them in the laboratory. (c) 2008 Elsevier Ltd. All rights reserved.
  •  
18.
  • Mastepanov, Mikhail, et al. (författare)
  • Large tundra methane burst during onset of freezing.
  • 2008
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 456:7222, s. 58-628
  • Tidskriftsartikel (refereegranskat)abstract
    • Terrestrial wetland emissions are the largest single source of the greenhouse gas methane. Northern high-latitude wetlands contribute significantly to the overall methane emissions from wetlands, but the relative source distribution between tropical and high-latitude wetlands remains uncertain. As a result, not all the observed spatial and seasonal patterns of atmospheric methane concentrations can be satisfactorily explained, particularly for high northern latitudes. For example, a late-autumn shoulder is consistently observed in the seasonal cycles of atmospheric methane at high-latitude sites, but the sources responsible for these increased methane concentrations remain uncertain. Here we report a data set that extends hourly methane flux measurements from a high Arctic setting into the late autumn and early winter, during the onset of soil freezing. We find that emissions fall to a low steady level after the growing season but then increase significantly during the freeze-in period. The integral of emissions during the freeze-in period is approximately equal to the amount of methane emitted during the entire summer season. Three-dimensional atmospheric chemistry and transport model simulations of global atmospheric methane concentrations indicate that the observed early winter emission burst improves the agreement between the simulated seasonal cycle and atmospheric data from latitudes north of 60 degrees N. Our findings suggest that permafrost-associated freeze-in bursts of methane emissions from tundra regions could be an important and so far unrecognized component of the seasonal distribution of methane emissions from high latitudes.
  •  
19.
  • Mastepanov, Mikhail, et al. (författare)
  • Revisiting factors controlling methane emissions from high-Arctic tundra
  • 2013
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 10:7, s. 5139-5158
  • Tidskriftsartikel (refereegranskat)abstract
    • The northern latitudes are experiencing disproportionate warming relative to the mid-latitudes, and there is growing concern about feedbacks between this warming and methane production and release from high-latitude soils. Studies of methane emissions carried out in the Arctic, particularly those with measurements made outside the growing season, are underrepresented in the literature. Here we present results of 5 yr (2006-2010) of automatic chamber measurements at a high-Arctic location in Zackenberg, NE Greenland, covering both the growing seasons and two months of the following freeze-in periods. The measurements show clear seasonal dynamics in methane emission. The start of the growing season and the increase in CH4 fluxes were strongly related to the date of snowmelt. Within each particular growing season, CH4 fluxes were highly correlated with the soil temperature (R-2 > 0.75), which is probably explained by high seasonality of both variables, and weakly correlated with the water table. The greatest variability in fluxes between the study years was observed during the first part of the growing season. Somewhat surprisingly, this variability could not be explained by commonly known factors controlling methane emission, i.e. temperature and water table position. Late in the growing season CH4 emissions were found to be very similar between the study years (except the extremely dry 2010) despite large differences in climatic factors (temperature and water table). Late-season bursts of CH4 coinciding with soil freezing in the autumn were observed during at least three years. The cumulative emission during the freeze-in CH4 bursts was comparable in size with the growing season emission for the year 2007, and about one third of the growing season emissions for the years 2009 and 2010. In all three cases the CH4 burst was accompanied by a corresponding episodic increase in CO2 emission, which can compose a significant contribution to the annual CO2 flux budget. The most probable mechanism of the late-season CH4 and CO2 bursts is physical release of gases accumulated in the soil during the growing season. In this study we discuss possible links between growing season and autumn fluxes. Multiannual dynamics of the subsurface CH4 storage pool are hypothesized to be such a link and an important driver of intearannual variations in the fluxes, capable of overruling the conventionally known short-term control factors (temperature and water table). Our findings suggest the importance of multiyear studies with a continued focus on shoulder seasons in Arctic ecosystems.
  •  
20.
  • Mastepanov, Mikhail (författare)
  • Towards a changed view on greenhouse gas exchange in the Arctic: new findings and improved techniques
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Arctic ecosystems represent an important component in the global terrestrial exchange of greenhouse gases and energy with the atmosphere. In the changing climate, which is most pronounced in the Arctic, the possible scenarios of greenhouse gas exchange response should be seriously considered in predictive climate modelling efforts. As a prerequisite for this, detailed studies of key processes affecting greenhouse gas exchange in the Arctic are important, as well as monitoring of its current dynamics. However, the number of such studies, carried on in high Northern latitudes is significantly smaller than for lower latitudes, and within the existing studies there is a bias towards studying the growing season. The main aim of this study was to improve our process understanding of greenhouse gas exchange in the Arctic terrestrial ecosystems, including the processes taking place at low temperatures and outside the growing season. In order to achieve this some development in measurement techniques, such as automatic closed and flow-through chambers, adapted for monitoring CH4 and CO2 exchange under Arctic conditions, membrane diffusion probes to study subsurface profiles of these gases, laboratory techniques of low-temperature incubation and gas exchange studies on permafrost samples. During the studies, some novel results were obtained, such as on detailed multiseasonal CH4 emission dynamics in a high Arctic fen, on late-season bursts of CH4 and CO2 at Greenland and Svalbard, and in relation to respiration and its origin in old permafrost. Four years of CH4 emission monitoring data have shown that the exchange of this greenhouse gas under truly Arctic conditions is having some very special dynamics and different dominating controlling factors compared with conventional knowledge from lower latitudes. The patterns of growing season CH4 emission are highly dependent on the snow melt date. The greatest variations in fluxes between the study years was observed during the first 30-40 days after snow melt. This variability could not be explained by common factors controlling methane emission at lower latitudes: temperature and water table position. Late in the growing season CH4 emissions were found to be very similar between the study years, this despite large differences in ambient and climatic factors. In this study we try to explain these unusual patterns. Late-season bursts of CH4 and CO2 coinciding with soil freezing after growing season was observed and documented in North-Eastern Greenland. A similar burst of CO2 at freezing time was documented on Svalbard. The accumulated emission during the freezing-season CH4 burst was found to be comparable in size with the growing season emission. In the study we also make an attempt to explain this phenomenon. Finally samples of permafrost soils up to 500 thousands years old were found to contain living microorganisms of the same age, continuing methabolic activity and CO2 production. In this study we try to explain this unique feature of permafrost inhabitants.
  •  
21.
  • Panikov, NS, et al. (författare)
  • Microbial activity in soils frozen to below-39 degrees C
  • 2006
  • Ingår i: Soil Biology & Biochemistry. - : Elsevier BV. - 0038-0717. ; 38:4, s. 785-794
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent research on life in extreme environments has shown that some microorganisms metabolize at extremely low temperatures in Arctic and Antarctic ice and permafrost. Here, we present kinetic data on CO2 and (CO2)-C-14 release from intact and C-14-glucose amended tundra soils (Barrow, Alaska) incubated for up to a year at 0 to -39 degrees C. The rate of CO2 production declined exponentially with temperature but it remained positive and measurable, e.g. 2-7 ng CO2-C cm(-3) soil d(-1), at -39 degrees C. The variation of CO2 release rate (v) was adequately explained by the double exponential dependence on temperature (T) and unfrozen water content (W) (r(2)> 0.98): v=A exp(lambda T+kW) and where A, lambda and k are constants. The rate of (CO2)-C-14 release from added glucose declined more steeply with cooling as compared with the release of total CO2, indicating that (a) there could be some abiotic component in the measured flux of CO2 or (b) endogenous respiration is more cold-resistant than substrate-induced respiration. The respiration activity was completely eliminated by soil sterilization (1 h, 121 degrees C), stimulated by the addition of oxidizable substrate (glucose, yeast extract), and reduced by the addition of acetate, which inhibits microbial processes in acidic soils (pH 3-5). The tundra soil from Barrow displayed higher below-zero activity than boreal soils from West Siberia and Sweden. The permafrost soils (20-30 cm) were more active than the samples from seasonally frozen topsoil (0-10 cm, Barrow). Finding measurable respiration to -39 degrees C is significant for determining, understanding, and predicting current and future CO2 emission to the atmosphere and for understanding the low temperature limits of microbial activity on the Earth and on other planets. (c) 2005 Elsevier Ltd. All rights reserved.
  •  
22.
  • Panikov, N. S., et al. (författare)
  • Membrane probe array: Technique development and observation of CO2 and CH4 diurnal oscillations in peat profile
  • 2007
  • Ingår i: Soil Biology & Biochemistry. - : Elsevier BV. - 0038-0717. ; 39:7, s. 1712-1723
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this study was to monitor the dynamics of gases such as CO2 and CH4 in a soil profile with sufficient temporal resolution to observe possible diurnal variations. A computer-controlled device called a membrane probes array (MPA) was developed that consisted of 9-12 individual membrane probes installed at various soil depths. Each probe was made of a stainless steel pipe with a 1 mm orifice covered with a silicone membrane. Soil gases diffuse through the membrane at a rate proportional to the ambient soil gas concentration. To measure diffusion rates, the probes are flushed with N-2 one-by-one at regular time intervals and accumulated gas is detected as a spike with IR and FID analyzers. The longer the period between flushings the higher the gas accumulation and the lower the detection limit for a particular soil gas. The developed MPA agreed well with conventional manual gas sampling in West-Siberian mesotrophic fen. In peat cores with intact Carex-Sphagnum vegetation incubated under constant temperature, water level and artificial light:dark (14: 10) cycles, regular diurnal oscillations of soil CO2 and CH4 occurred in the upper part of the peat core down to 19 cm. Gas content in the top layer (3 cm) grew during the light phase, and returned back during the dark phase. In layers further down in the soil, the same events were observed but with progressively increased time delay and lower amplitude. The obtained data agreed with the hypothesis that diurnal variations in soil CO2 and CH4 content are caused by periodic changes in intensity of root exudation that provide a major C- and energy source for soil microorganisms including methanogens. At a soil depth of 23 cm, where the peak of gas bubbles occurred, the signal for both gases became chaotic and not related to the light:dark cycle.
  •  
23.
  • Petrescu, Ana Maria Roxana, et al. (författare)
  • The uncertain climate footprint of wetlands under human pressure
  • 2015
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 112:15, s. 4594-4599
  • Tidskriftsartikel (refereegranskat)abstract
    • Significant climate risks are associated with a positive carbon-temperature feedback in northern latitude carbon-rich ecosystems, making an accurate analysis of human impacts on the net greenhouse gas balance of wetlands a priority. Here, we provide a coherent assessment of the climate footprint of a network of wetland sites based on simultaneous and quasi-continuous ecosystem observations of CO2 and CH4 fluxes. Experimental areas are located both in natural and in managed wetlands and cover a wide range of climatic regions, ecosystem types, and management practices. Based on direct observations we predict that sustained CH4 emissions in natural ecosystems are in the long term (i.e., several centuries) typically offset by CO2 uptake, although with large spatiotemporal variability. Using a space-for-time analogy across ecological and climatic gradients, we represent the chronosequence from natural to managed conditions to quantify the "cost" of CH4 emissions for the benefit of net carbon sequestration. With a sustained pulse-response radiative forcing model, we found a significant increase in atmospheric forcing due to land management, in particular for wetland converted to cropland. Our results quantify the role of human activities on the climate footprint of northern wetlands and call for development of active mitigation strategies for managed wetlands and new guidelines of the Intergovernmental Panel on Climate Change (IPCC) accounting for both sustained CH4 emissions and cumulative CO2 exchange.
  •  
24.
  • Pirk, Norbert, et al. (författare)
  • Calculations of automatic chamber flux measurements of methane and carbon dioxide using short time series of concentrations
  • 2016
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 13:4, s. 903-912
  • Tidskriftsartikel (refereegranskat)abstract
    • The closed chamber technique is widely used to measure the exchange of methane (CH4) and carbon dioxide (CO2) from terrestrial ecosystems. There is, however, large uncertainty about which model should be used to calculate the gas flux from the measured gas concentrations. Due to experimental uncertainties the simple linear regression model (first-order polynomial) is often applied, even though theoretical considerations of the technique suggest the application of other, curvilinear models. High-resolution automatic chamber systems which sample gas concentrations several hundred times per flux measurement make it possible to resolve the curvilinear behavior and study the information imposed by the natural variability of the temporal concentration changes. We used more than 50 000 such flux measurements of CH4 and CO2 from five field sites located in peat-forming wetlands ranging from 56 to 78 degrees N to quantify the typical differences between flux estimates of different models. In addition, we aimed to assess the curvilinearity of the concentration time series and test the general applicability of curvilinear models. Despite significant episodic differences between the calculated flux estimates, the overall differences are generally found to be smaller than the local flux variability on the plot scale. The curvilinear behavior of the gas concentrations within the chamber is strongly influenced by wind-driven chamber leakage, and less so by changing gas concentration gradients in the soil during chamber closure. Such physical processes affect both gas species equally, which makes it possible to isolate biochemical processes affecting the gases differently, such as photosynthesis limitation by chamber headspace CO2 concentrations under high levels of incoming solar radiation. We assess the possibility to exploit this effect for a partitioning of the net CO2 flux into photosynthesis and ecosystem respiration as an example of how high-resolution automatic chamber measurements could be used for purposes beyond the estimation of the net gas flux. This shows that while linear and curvilinear calculation schemes can provide similar net fluxes, only curvilinear models open additional possibilities for high-resolution automatic chamber measurements.
  •  
25.
  • Pirk, Norbert, et al. (författare)
  • Methane emission bursts from permafrost environments during autumn freeze-in: New insights from ground-penetrating radar
  • 2015
  • Ingår i: Geophysical Research Letters. - 1944-8007. ; 42:16, s. 6732-6738
  • Tidskriftsartikel (refereegranskat)abstract
    • Large amounts of methane (CH4) are known to be emitted from permafrost environments during the autumn freeze-in, but the specific soil conditions leading up to these bursts are unclear. Therefore, we used an ultrawide band ground-penetrating radar in Northeast Greenland in autumn 2009 to estimate the volumetric composition inside the soil through dielectric characterization from 200 to 3200 MHz. Our results suggest a compression of the gas reservoir during the phase transition of soil water, which is accompanied by a peak in surface CH4 emissions. About 1 week thereafter, there seems to be a decompression event, consistent with ground cracking which allows the gas reservoir to expand again. This coincides with the largest CH4 emission, exceeding the summer maximum by a factor of 4. We argue that these complementary measurement techniques are needed to come to an understanding of tundra CH4 bursts connected to soil freezing.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 42

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy