SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Matsui Hitoshi) "

Sökning: WFRF:(Matsui Hitoshi)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Burgos, Maria A., et al. (författare)
  • A global model-measurement evaluation of particle light scattering coefficients at elevated relative humidity
  • 2020
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 20:17, s. 10231-10258
  • Tidskriftsartikel (refereegranskat)abstract
    • The uptake of water by atmospheric aerosols has a pronounced effect on particle light scattering properties, which in turn are strongly dependent on the ambient relative humidity (RH). Earth system models need to account for the aerosol water uptake and its influence on light scattering in order to properly capture the overall radiative effects of aerosols. Here we present a comprehensive model-measurement evaluation of the particle light scattering enhancement factor f (RH), defined as the particle light scattering coefficient at elevated RH (here set to 85 %) divided by its dry value. The comparison uses simulations from 10 Earth system models and a global dataset of surface-based in situ measurements. In general, we find a large diversity in the magnitude of predicted f (RH) amongst the different models, which can not be explained by the site types. Based on our evaluation of sea salt scattering enhancement and simulated organic mass fraction, there is a strong indication that differences in the model parameterizations of hygroscopicity and model chemistry are driving at least some of the observed diversity in simulated f (RH). Additionally, a key point is that defining dry conditions is difficult from an observational point of view and, depending on the aerosol, may influence the measured f (RH). The definition of dry also impacts our model evaluation, because several models exhibit significant water uptake between RH = 0% and 40 %. The multisite average ratio between model outputs and measurements is 1.64 when RH = 0% is assumed as the model dry RH and 1.16 when RH = 40% is the model dry RH value. The overestimation by the models is believed to originate from the hygroscopicity parameterizations at the lower RH range which may not implement all phenomena taking place (i.e., not fully dried particles and hysteresis effects). This will be particularly relevant when a location is dominated by a deliquescent aerosol such as sea salt. Our results emphasize the need to consider the measurement conditions in such comparisons and recognize that measurements referred to as dry may not be dry in model terms. Recommendations for future model-measurement evaluation and model improvements are provided.
  •  
2.
  • Fanourgakis, George S., et al. (författare)
  • Evaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications for cloud droplet formation
  • 2019
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 19:13, s. 8591-8617
  • Tidskriftsartikel (refereegranskat)abstract
    • A total of 16 global chemistry transport models and general circulation models have participated in this study; 14 models have been evaluated with regard to their ability to reproduce the near-surface observed number concentration of aerosol particles and cloud condensation nuclei (CCN), as well as derived cloud droplet number concentration (CDNC). Model results for the period 2011-2015 are compared with aerosol measurements (aerosol particle number, CCN and aerosol particle composition in the submicron fraction) from nine surface stations located in Europe and Japan. The evaluation focuses on the ability of models to simulate the average across time state in diverse environments and on the seasonal and short-term variability in the aerosol properties. There is no single model that systematically performs best across all environments represented by the observations. Models tend to underestimate the observed aerosol particle and CCN number concentrations, with average normalized mean bias (NMB) of all models and for all stations, where data are available, of -24% and -35% for particles with dry diameters >50 and >120nm, as well as -36% and -34% for CCN at supersaturations of 0.2% and 1.0%, respectively. However, they seem to behave differently for particles activating at very low supersaturations (<0.1%) than at higher ones. A total of 15 models have been used to produce ensemble annual median distributions of relevant parameters. The model diversity (defined as the ratio of standard deviation to mean) is up to about 3 for simulated N3 (number concentration of particles with dry diameters larger than 3nm) and up to about 1 for simulated CCN in the extra-polar regions. A global mean reduction of a factor of about 2 is found in the model diversity for CCN at a supersaturation of 0.2% (CCN0.2) compared to that for N3, maximizing over regions where new particle formation is important. An additional model has been used to investigate potential causes of model diversity in CCN and bias compared to the observations by performing a perturbed parameter ensemble (PPE) accounting for uncertainties in 26 aerosol-related model input parameters. This PPE suggests that biogenic secondary organic aerosol formation and the hygroscopic properties of the organic material are likely to be the major sources of CCN uncertainty in summer, with dry deposition and cloud processing being dominant in winter. Models capture the relative amplitude of the seasonal variability of the aerosol particle number concentration for all studied particle sizes with available observations (dry diameters larger than 50, 80 and 120nm). The short-term persistence time (on the order of a few days) of CCN concentrations, which is a measure of aerosol dynamic behavior in the models, is underestimated on average by the models by 40% during winter and 20% in summer. In contrast to the large spread in simulated aerosol particle and CCN number concentrations, the CDNC derived from simulated CCN spectra is less diverse and in better agreement with CDNC estimates consistently derived from the observations (average NMB -13% and -22% for updraft velocities 0.3 and 0.6ms-1, respectively). In addition, simulated CDNC is in slightly better agreement with observationally derived values at lower than at higher updraft velocities (index of agreement 0.64 vs. 0.65). The reduced spread of CDNC compared to that of CCN is attributed to the sublinear response of CDNC to aerosol particle number variations and the negative correlation between the sensitivities of CDNC to aerosol particle number concentration (Nd=Na) and to updraft velocity (Nd=w). Overall, we find that while CCN is controlled by both aerosol particle number and composition, CDNC is sensitive to CCN at low and moderate CCN concentrations and to the updraft velocity when CCN levels are high. Discrepancies are found in sensitivities Nd=Na and Nd=w; models may be predisposed to be too "aerosol sensitive" or "aerosol insensitive" in aerosol-cloud-climate interaction studies, even if they may capture average droplet numbers well. This is a subtle but profound finding that only the sensitivities can clearly reveal and may explain intermodel biases on the aerosol indirect effect.
  •  
3.
  • Kitamura, Keiko, et al. (författare)
  • Decline in gene diversity and strong genetic drift in the northward-expanding marginal populations of Fagus crenata
  • 2015
  • Ingår i: Tree Genetics & Genomes. - : Springer Science and Business Media LLC. - 1614-2942 .- 1614-2950. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The species distribution of Fagus crenata, or Japanese beech, in the Japanese archipelago shifted northward during phytogeographical changes that occurred during the Pleistocene and Holocene epochs. Presently, the continuous natural distribution of beech reaches north to the Kuromatsunai-Depression of Hokkaido Island, Japan. In addition, dozens of marginal patches and isolated individuals north of the continuous distribution have been observed. F. crenata grows remarkably well among these small-scattered northern marginal populations, which must have originated from seeds dispersed beyond the northern limit of the continuous beech forest. It is conceivable that the distribution of F. crenata is still in the process of expanding northward. We investigated the genetic structure of 33 beech populations to evaluate the population gene diversity at the leading northern edge of the range expansion. We analyzed 12 nuclear microsatellite loci in each of the 1,693 individuals. Genetic diversity parameters such as expected heterozygosity and allelic richness were clearly lower in the northernmost populations. We found genetic differentiation in the northernmost distribution range (F-ST=0.045, G(ST)'=0.242). STRU CTURE analysis revealed that the southwestern continuous populations consisted of homogeneous ancestral clusters. However, northeastern marginal populations consisted of mixtures of highly differentiated clusters with higher levels of genetic drift than found in the continuous populations.
  •  
4.
  • Kuranaga, Yasuhiro, et al. (författare)
  • Enhancing Detection Sensitivity of ZnO-Based Infrared Plasmonic Sensors Using Capped Dielectric Ga2O3 Layers for Real-Time Monitoring of Biological Interactions
  • 2020
  • Ingår i: ACS Applied Bio Materials. - : AMER CHEMICAL SOC. - 2576-6422. ; 3:9, s. 6331-6342
  • Tidskriftsartikel (refereegranskat)abstract
    • Surface plasmon resonances on Ga-doped ZnO (ZnO/Ga) layer surfaces (ZnO-SPRs) have attracted substantial attention as alternative plasmonic materials in the infrared range. We present further enhancement of the detection limits of ZnO-SPRs to monitor biological interactions by introducing thin dielectric layers into ZnO-SPRs, which remarkably modify the electric fields and the corresponding decay lengths on the sensing surfaces. The presence of a high-permittivity dielectric layer of Ga2O3 provides high wavelength sensitivities of the ZnO-SPRs due to the strongly confined electric fields. The superior sensing capabilities of the proposed samples were verified by real-time monitoring of the biological interactions between biotin and streptavidin molecules. Introduction of the high-permittivity dielectric layer into ZnO-SPRs effectively enhances the detection sensitivity and therefore allowed for the observation of biological interactions. This paper provides useful information for the development of optical detection techniques for use in biological fields based on ZnO from the viewpoints of plasmonic applications.
  •  
5.
  • Proletov, Ian, et al. (författare)
  • Primary and secondary glomerulonephritides 1.
  • 2014
  • Ingår i: Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association. - : Oxford University Press (OUP). - 1460-2385. ; 29 Suppl 3:May, s. 186-200
  • Tidskriftsartikel (refereegranskat)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy