SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mauder M.) "

Sökning: WFRF:(Mauder M.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Franz, D, et al. (författare)
  • Towards long-term standardised carbon and greenhouse gas observations for monitoring Europe´s terrestrial ecosystems: a review
  • 2018
  • Ingår i: International Agrophysics. - : Walter de Gruyter GmbH. - 0236-8722 .- 2300-8725. ; 32, s. 439-455
  • Tidskriftsartikel (refereegranskat)abstract
    • Research infrastructures play a key role in launching a new generation of integrated long-term, geographically distributed observation programmes designed to monitor climate change, better understand its impacts on global ecosystems, and evaluate possible mitigation and adaptation strategies. The pan-European Integrated Carbon Observation System combines carbon and greenhouse gas (GHG; CO2, CH4, N2O, H2O) observations within the atmosphere, terrestrial ecosystems and oceans. High-precision measurements are obtained using standardised methodologies, are centrally processed and openly available in a traceable and verifiable fashion in combination with detailed metadata. The Integrated Carbon Observation System ecosystem station network aims to sample climate and land-cover variability across Europe. In addition to GHG flux measurements, a large set of complementary data (including management practices, vegetation and soil characteristics) is collected to support the interpretation, spatial upscaling and modelling of observed ecosystem carbon and GHG dynamics. The applied sampling design was developed and formulated in protocols by the scientific community, representing a trade-off between an ideal dataset and practical feasibility. The use of open-access, high-quality and multi-level data products by different user communities is crucial for the Integrated Carbon Observation System in order to achieve its scientific potential and societal value.
  •  
2.
  • Jansen, Joachim, 1989-, et al. (författare)
  • Monitoring of carbon-water fluxes at Eurasian meteorological stations using random forest and remote sensing
  • 2023
  • Ingår i: Scientific Data. - : Springer Nature. - 2052-4463. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Simulating the carbon-water fluxes at more widely distributed meteorological stations based on the sparsely and unevenly distributed eddy covariance flux stations is needed to accurately understand the carbon-water cycle of terrestrial ecosystems. We established a new framework consisting of machine learning, determination coefficient (R2), Euclidean distance, and remote sensing (RS), to simulate the daily net ecosystem carbon dioxide exchange (NEE) and water flux (WF) of the Eurasian meteorological stations using a random forest model or/and RS. The daily NEE and WF datasets with RS-based information (NEE-RS and WF-RS) for 3774 and 4427 meteorological stations during 2002-2020 were produced, respectively. And the daily NEE and WF datasets without RS-based information (NEE-WRS and WF-WRS) for 4667 and 6763 meteorological stations during 1983-2018 were generated, respectively. For each meteorological station, the carbon-water fluxes meet accuracy requirements and have quasi-observational properties. These four carbon-water flux datasets have great potential to improve the assessments of the ecosystem carbon-water dynamics.
  •  
3.
  • Helbig, Manuel, et al. (författare)
  • Integrating continuous atmospheric boundary layer and tower-based flux measurements to advance understanding of land-atmosphere interactions
  • 2021
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923. ; 307
  • Forskningsöversikt (refereegranskat)abstract
    • The atmospheric boundary layer mediates the exchange of energy, matter, and momentum between the land surface and the free troposphere, integrating a range of physical, chemical, and biological processes and is defined as the lowest layer of the atmosphere (ranging from a few meters to 3 km). In this review, we investigate how continuous, automated observations of the atmospheric boundary layer can enhance the scientific value of co-located eddy covariance measurements of land-atmosphere fluxes of carbon, water, and energy, as are being made at FLUXNET sites worldwide. We highlight four key opportunities to integrate tower-based flux measurements with continuous, long-term atmospheric boundary layer measurements: (1) to interpret surface flux and atmospheric boundary layer exchange dynamics and feedbacks at flux tower sites, (2) to support flux footprint modelling, the interpretation of surface fluxes in heterogeneous and mountainous terrain, and quality control of eddy covariance flux measurements, (3) to support regional-scale modeling and upscaling of surface fluxes to continental scales, and (4) to quantify land-atmosphere coupling and validate its representation in Earth system models. Adding a suite of atmospheric boundary layer measurements to eddy covariance flux tower sites, and supporting the sharing of these data to tower networks, would allow the Earth science community to address new emerging research questions, better interpret ongoing flux tower measurements, and would present novel opportunities for collaborations between FLUXNET scientists and atmospheric and remote sensing scientists.
  •  
4.
  • Stoy, Paul C., et al. (författare)
  • A data-driven analysis of energy balance closure across FLUXNET research sites: The role of landscape scale heterogeneity
  • 2013
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 1873-2240 .- 0168-1923. ; 171, s. 137-152
  • Tidskriftsartikel (refereegranskat)abstract
    • The energy balance at most surface-atmosphere flux research sites remains unclosed. The mechanisms underlying the discrepancy between measured energy inputs and outputs across the global FLUXNET tower network are still under debate. Recent reviews have identified exchange processes and turbulent motions at large spatial and temporal scales in heterogeneous landscapes as the primary cause of the lack of energy balance closure at some intensively-researched sites, while unmeasured storage terms cannot be ruled out as a dominant contributor to the lack of energy balance closure at many other sites. We analyzed energy balance closure across 173 ecosystems in the FLUXNET database and explored the relationship between energy balance closure and landscape heterogeneity using MODIS products and GLOBEstat elevation data. Energy balance closure per research site (C-EBS)averaged 0.84 +/- 0.20, with best average closures in evergreen broadleaf forests and savannas (0.91-0.94) and worst average closures in crops, deciduous broadleaf forests, mixed forests and wetlands (0.70-0.78). Half-hourly or hourly energy balance closure on a percent basis increased with friction velocity (u.) and was highest on average under near-neutral atmospheric conditions. C-EBS was significantly related to mean precipitation, gross primary productivity and landscape-level enhanced vegetation index (EVI) from MODIS, and the variability in elevation, MODIS plant functional type, and MODIS EVI. A linear model including landscape-level variability in both EVI and elevation, mean precipitation, and an interaction term between EVI variability and precipitation had the lowest Akaike's information criterion value. C-EBS in landscapes with uniform plant functional type approached 0.9 and C-EBS in landscapes with uniform EVI approached 1. These results suggest that landscape-level heterogeneity in vegetation and topography cannot be ignored as a contributor to incomplete energy balance closure at the flux network level, although net radiation measurements, biological energy assimilation, unmeasured storage terms, and the importance of good practice including site selection when making flux measurements should not be discounted. Our results suggest that future research should focus on the quantitative mechanistic relationships between energy balance closure and landscape-scale heterogeneity, and the consequences of mesoscale circulations for surface-atmosphere exchange measurements. (C) 2012 Elsevier B.V. All rights reserved.
  •  
5.
  • Zhang, Weijie, et al. (författare)
  • The effect of relative humidity on eddy covariance latent heat flux measurements and its implication for partitioning into transpiration and evaporation
  • 2023
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923. ; 330
  • Tidskriftsartikel (refereegranskat)abstract
    • While the eddy covariance (EC) technique is a well-established method for measuring water fluxes (i.e., evaporation or 'evapotranspiration’, ET), the measurement is susceptible to many uncertainties. One such issue is the potential underestimation of ET when relative humidity (RH) is high (>70%), due to low-pass filtering with some EC systems. Yet, this underestimation for different types of EC systems (e.g. open-path or closed-path sensors) has not been characterized for synthesis datasets such as the widely used FLUXNET2015 dataset. Here, we assess the RH-associated underestimation of latent heat fluxes (LE, or ET) from different EC systems for 163 sites in the FLUXNET2015 dataset. We found that the LE underestimation is most apparent during hours when RH is higher than 70%, predominantly observed at sites using closed-path EC systems, but the extent of the LE underestimation is highly site-specific. We then propose a machine learning based method to correct for this underestimation, and compare it to two energy balance closure based LE correction approaches (Bowen ratio correction, BRC, and attributing all errors to LE). Our correction increases LE by 189% for closed-path sites at high RH (>90%), while BRC increases LE by around 30% for all RH conditions. Additionally, we assess the influence of these corrections on ET-based transpiration (T) estimates using two different ET partitioning methods. Results show opposite responses (increasing vs. slightly decreasing T-to-ET ratios, T/ET) between the two methods when comparing T based on corrected and uncorrected LE. Overall, our results demonstrate the existence of a high RH bias in water fluxes in the FLUXNET2015 dataset and suggest that this bias is a pronounced source of uncertainty in ET measurements to be considered when estimating ecosystem T/ET and WUE.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy