SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mauss Fabian) "

Sökning: WFRF:(Mauss Fabian)

  • Resultat 1-25 av 47
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahmed, Syed, et al. (författare)
  • A comprehensive and compact n-heptane oxidation model derived using chemical lumping
  • 2007
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9084. ; 9:9, s. 1107-1126
  • Tidskriftsartikel (refereegranskat)abstract
    • A detailed reaction mechanism for n-heptane oxidation has been compiled and subsequently simplified. The model is based on a kinetic model for C1-C4 fuel oxidation of Hoyermann et al. [Phys. Chem. Chem. Phys., 2004, 6, 3824] and a detailed mechanism for n-heptane oxidation developed by Curran et al. [Combust. Flame, 1998, 114, 149]. The generated mechanism is kept compact by limiting the application of the low temperature oxidation pathways to the fuel molecule. The first reaction steps and the complex low temperature paths in the oxidation process have been simplified and reorganized by linear chemical lumping. The reported procedure allows a decrease in number of species and reactions with only a minor loss of model accuracy. The simplified model is of very compact size and gives an advantageous starting point for further model reduction. By this chemically lumped general mechanism without further adjustments the large set of experimental data for the high and low temperature oxidation ( ignition delay times, species concentration profiles, heat release and engine pressure profiles, flame speeds and flame structure data) for conditions ranging from very low to high temperatures (550-2500 K), very lean to extremely fuel rich (0.22 < phi < 3) mixtures and pressures between 1 and 42 bar is consistently described providing a basis for reliable predictions for future applications, (i) building reaction mechanisms for similar but chemically more complex fuels (e.g. iso-octane, n-decane,...) and (ii) calculating complex flow fields ("fluid dynamics'') after further simplification with advanced reduction tools.
  •  
2.
  • Ahmedi, Abdelhadi, et al. (författare)
  • Engine knock prediction using multi zone model for spark ignition engines
  • 2006
  • Ingår i: ICE. - 1066-5048. ; 2006
  • Konferensbidrag (refereegranskat)abstract
    • Autoignition in SI engines is an abnormal combustion mode and may lead to engine knock in SI engines. Knock may cause damage and it is a source of noise in engines. It limits the compression ratio of the engine and a low compression ratio means low fuel conversion efficiency of the engine. In this paper a multi zone model based on an existing two zone model Hajireza et al., [1 and 12] and Stenlaas et al., [30] is developed and validated against the experimental results. The validation is done by using the same detailed chemical mechanism consisting of 141 species and about 1405 reactions under the same conditions. The model is a zero dimensional model capable of simulating a full engine cycle. The two zone combustion model consists of a burned and an unburned zone, separated by a thin adiabatic flame front. The multi zone model differs in the handling of the burned gas. In the multi zone case a number of burned zones are present. The number of zones is decided by the temperature difference between the flame front and the last generated burned zone. The detailed chemical mechanism is taken into account in each zone, while the propagating flame front is calculated from the Wiebe function. Each zone is assumed to be a homogeneous mixture with a uniform temperature, mole and mass fractions of species. The spatial variation of the pressure is neglected, i.e., it is assumed to be the same in the whole combustion chamber at every instant of time. Autoignition is handled by the chemical kinetic model. As the unburned zone is assumed homogeneous the effect of auto ignition is a single pressure peak. The model is not designed to predict the pressure oscillations seen in engine knock. Copyright
  •  
3.
  •  
4.
  • Bai, Xue-Song, et al. (författare)
  • Laminar flamelet structure at low and vanishing scalar dissipation rate
  • 2000
  • Ingår i: Combustion and Flame. - 0010-2180 .- 1556-2921. ; 120:3, s. 285-300
  • Tidskriftsartikel (refereegranskat)abstract
    • The laminar flamelet structures of methane/air, propane/air, and hydrogen/air nonpremixed combustion at low and vanishing scalar dissipation rates are investigated, by numerical calculations of a system of conservation equations in a counterflow diffusion flame configuration, together with a transport equation defining the mixture fraction and scalar dissipation rate. The chemical reaction mechanisms consist of 82 elementary reactions up to C-3 species. In the limit of vanishing scalar dissipation rate, two types of structures are shown to appear. In one structure fuel and oxygen are consumed in a thin layer located near the stoichiometric mixture fraction, Z(st), where the temperature and the major products reach their peaks. This is similar to the so-called Burke-Schumann single layer flame sheet structure. One example is the hydrogen/air diffusion flame. The second structure consists of multilayers. Fuel and oxygen are consumed at different locations. Oxygen is consumed at Z(l) (near Z(st)), where the temperature and the major products reach their peaks. Fuel is consumed at Z(r) (> Z(st)). Between Z(l) and Z(r) some intermediate and radical species are found in high concentrations. Hydrocarbon/air nonpremixed flames are of this type. It is shown that for methane/air diffusion flames, some chemical reactions which are negligible at large scalar dissipation rate near flame quenching conditions, play essential roles for the existence of the multilayer structure. Examples of such reactions are, CH4 --> CH3 + H, H2O + O-2 --> HO2 + OH, H2O + M --> H + OH + M and CHO + H-2 --> O + H. The sensitivity of the species distributions in the flamelet to the scalar dissipation rate varies for different species. The most sensitive species are the intermediates and radicals at the fuel-rich side. At low scalar dissipation rate the radiative heat transfer can significantly move the fuel consumption layer to the oxygen consumption layer, increase the oxygen leakage to fuel side, and even quench the flame. Differential diffusion modifies the species and temperature profiles in the flamelet, but does not affect the multilayer nature of the flamelet. This result is used to successfully explain the high CO emissions in a turbulent methane/air diffusion flame.
  •  
5.
  • Balthasar, Michael, et al. (författare)
  • A computational study of the thermal ionization of soot particles and its effect on their growth in laminar premixed flames
  • 2002
  • Ingår i: Combustion and Flame. - 0010-2180. ; 129:1-2, s. 204-216
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of thermal ionization on the growth of soot particles has been analyzed by detailed kinetic modeling of a low-pressure premixed acetylene flame. The detailed kinetic model considers the oxidation of fuel, the formation and growth of polycyclic aromatic hydrocarbons, and particle inception, coagulation, as well as mass growth via surface reactions. A numerical method has been developed, which considers the production of charged particles by thermal ionization as well as coagulation and surface reactions of these particles. The enhancement of coagulation by collisions between charged-charged and charged-neutral particles is rigorously accounted for in the numerical model. The particle size distribution functions for both neutral and charged particles were solved using the method of moments. The computed relative soot volume fractions for neutral and charged soot particles were compared to measurements and found to be in good agreement with them. The results show also that omitting of thermal ionization of soot particles does not lead to significant errors in the simulation of soot formation in the acetylene flame, as long as the nature of the surface reactions between charged particles and gaseous molecules remains the same as that for neutral particles. This result can be generalized to most laboratory laminar premixed and counterflow diffusion flames with flame temperatures not exceeding 2100 K.
  •  
6.
  • Balthasar, Michael, et al. (författare)
  • Detailed Modeling of soot formation in a partially stirred plug flow reactor
  • 2002
  • Ingår i: Combustion and Flame. - 0010-2180. ; 128:4, s. 395-409
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this work is to propose a detailed model for the formation of soot in turbulent reacting flow and to use this model to study a carbon black furnace. The model is based on a combination of a detailed reaction mechanism to calculate the gas phase chemistry, a detailed kinetic soot model based on the method of moments, and the joint composition probability density function (PDF) of these scalar quantities. Two problems, which arise when modeling the formation of soot in turbulent flows using a PDF approach, are studied. A consistency study of the combined scalar-soot moment approach reveals that the molecular diffusion term in the PDF-equation can be closed by the IEM and Curl-type mixing models. An investigation of different kernels for the collision frequency of soot particles shows that the influence of turbulence on particle coagulation is negligible for typical flame conditions and the particle size range considered. The model is used as a simple toot to simulate a furnace black process, which is the most important industrial process for the production of carbon blacks. Despite the simplifications in the modeling of the turbulent flow reasonable agreement between the calculated soot yield and data measured in an industrial furnace black reactor is achieved although no adjustments were made to the kinetic parameters of the soot model. The effect of the mixing intensity on soot yield and different soot formation rates is investigated. In addition the influence of different operating conditions such as temperature and equivalence ratio in the primary zone of the reactor is studied.
  •  
7.
  • Balthasar, Michael, et al. (författare)
  • Implementation and validation of a new soot model and application to aeroengine combustors
  • 2002
  • Ingår i: Journal of Engineering for Gas Turbines and Power. - : ASME International. - 1528-8919 .- 0742-4795. ; 124:1, s. 66-74
  • Tidskriftsartikel (refereegranskat)abstract
    • The modeling of soot formation and oxidation under industrially relevant conditions has made significant progress in recent years. Simplified models introducing a small number of transport equations into a CFD Code have been used with some success in research configurations simulating a reciprocating diesel engine. Soot formation and oxidation in the turbulent flow is calculated on the basis of a laminar flamelet library model. The gas phase reactions are modeled with a detailed mechanism for the combustion of heptane containing 89 species and 855 reactions developed by Frenklach and Warnatz and revised by Mauss. The soot model is divided into gas phase reactions. the growth of polycyclic aromatic hydrocarbons (PAH) and the processes of particle inception, heterogeneous face growth, oxidation, and condensation. The first two are modeled within the laminar flamelet chemistry, while the soot model deals with the soot particle processes. The time scales of soot formation are assumed to he much larger than the turbulent time scales. Therefore rates of soot formation are tabulated in the flamelet libraries rather than the soot volume fraction itself. The different rates of soot formation, e.g., particle inception, sinface growth, firagmentation, and oxidation, computed on the basis of a detailed soot model, are calculated in the dissipation rate space and further simplified by fitting them to simple analytical functions. A transport equation for the mean soot mass fraction is solved in the CFD code. The mean rate in this transport equation is closed with the help of presumed probability density functions for the mixture fraction and the scalar dissipation rate. Heat loss due to radiation can be taken into account by including a heat loss parameter it? the flamelet calculations describing the change of enthalpy due to radiation, but was not used for the results reported here. The soot model was integrated into an existing commercial CFD code is a post-processing module to existing combustion CFD flow fields and is very robust with high convergence rates. The model is validated with laboratory flame data and using a realistic three-dimensional BM V Rolls-Royce combustor configuration, where test data at high pressure are available. Good agreement between experiment and simulation is achieved for laboratory flames, whereas soot is overpredicted for the aeroengine combustor configuration by 1-2 orders of magnitude.
  •  
8.
  • Behave, A, et al. (författare)
  • Analysis of a natural gas fuelled homogeneous charge compression ignition engine with exhaust gas recirculation using a stochastic reactor model
  • 2004
  • Ingår i: International Journal of Engine Research. - : SAGE Publications. - 1468-0874 .- 2041-3149. ; 5, s. 93-104
  • Tidskriftsartikel (refereegranskat)abstract
    • Combustion and emissions formation in a Volvo TD 100 series diesel engine running in a homogeneous charge compression ignition (HCCI) mode and fuelled with natural gas is simulated and compared with measurements for both with and without external exhaust gas recirculation (EGR). A new stochastic approach is introduced to model the convective heat transfer, which accounts for fluctuations and fluid-wall interaction effects. This model is included in a partially stirred plug flow reactor (PaSPFR) approach, a stochastic reactor model (SRM), and is applied to study the effect of EGR on pressure, autoignition timing and emissions of CO and unburned hydrocarbons (HCs). The model accounts for temperature inhomogeneities and includes a detailed chemical mechanism to simulate the chemical reactions within the combustion chamber. Turbulent mixing is described by the interaction by exchange with the mean (IEM) model. A Monte Carlo method with a second-order time-splitting technique is employed to obtain the numerical solution. The model is validated by comparing the simulated in-cylinder pressure history and emissions with measurements taken from Christensen and Johansson (SAE Paper 982454). Excellent agreement is obtained between the peak pressure, ignition timing and CO and HC emissions predicted by the model and those obtained from the measurements for the non-EGR, 38 per cent EGR and 47 per cent EGR cases. A comparison between the pressure profiles for the cases studied reveals that the ignition timing and the peak pressure are dependent on the EGR. With EGR, the peak pressure reduces and the autoignition is delayed. The trend observed in the measured emissions with varying EGR is also predicted correctly by the model.
  •  
9.
  • Behave, Amit, et al. (författare)
  • Modelling a Duaul-fuelled Multi-cylinder HCCI Engine Using a PDF based Engine Cycle Simulator
  • 2004
  • Ingår i: SAE technical paper series. - 0148-7191. ; :No 2004-01-0561
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Operating the HCCI engine with dual fuels with a large difference in auto-ignition characteristics (octane number) is one way to control the HCCI operation. The effect of octane number on combustion, emissions and engine performance in a 6-cylinder SCANIA truck engine, fuelled with n-heptane and isooctane, and running in HCCI mode, are investigated numerically and compared with measurements taken from Olsson et al. To correctly simulate the HCCI engine operation, we implement a probability density function (PDF)-based stochastic reactor model (including detailed chemical kinetics and accounting for inhomogeneities in composition and temperature) coupled with GT-POWER, a 1-D fluid-dynamics-based engine cycle simulator. Such a coupling proves to be ideal for the understanding of the combustion phenomenon as well as the gas dynamics processes intrinsic to the engine cycle. The convective heat transfer in the engine cylinder is modeled as a stochastic jump process and accounts for the fluctuations and fluid-wall interaction effects. Curl's coalescence-dispersion model is used to describe turbulent mixing. A good agreement is observed between the predicted values and measurements for in-cylinder pressure, auto-ignition timing and CO, HC as well as NOx emissions for the base case. The advanced PDF-based engine cycle simulator clearly outperforms the widely used homogeneous model-based full cycle engine simulator. The trends in combustion characteristics such as ignition crank angle degree and combustion duration with respect to varying octane numbers are predicted well as compared to measurements. The integrated model provides reliable predictions for in-cylinder temperature, CO, HC as well as NOx emissions over a wide range of octane numbers studied.
  •  
10.
  • Bhave, Amit, et al. (författare)
  • Evaluating the EGR-AFR Operating Range of a HCCI Engine
  • 2005
  • Ingår i: SAE technical paper series. - 0148-7191. ; :2005-01-0161
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • We present a computational tool to develop an exhaust gas recirculation (EGR) - air-fuel ratio (AFR) operating range for homogeneous charge compression ignition (HCCI) engines. A single- cylinder Ricardo E-6 engine running in HCCI mode, with external EGR is simulated using an improved probability density function (PDF)-based engine cycle model. For a base case, the in-cylinder temperature and unburned hydrocarbon emissions predicted by the model show a satisfactory agreement with measurements. Furthermore, the model is applied to develop the operating range for various combustion parameters, emissions and engine parameters with respect to the air-fuel ratio and the amount of EGR used. The model predictions agree reasonably well with the experimental results for various parameters over the entire EGR-AFR operating range thus proving the robustness of the PDF based model. The boundaries of the operating range namely, knocking, partial burn, and misfire are reliably predicted by the model. In particular, the model provides a useful insight into the misfire phenomenon by depicting the cyclic variation in the ignition timing and the in-cylinder temperature profiles. Finally, we investigate two control options, namely heating intake charge and trapping residual burned fraction by negative valve overlap. The effect of these two methods on HCCI combustion and CO, HC and NOdx emissions is studied.
  •  
11.
  •  
12.
  • Blurock, Edward, et al. (författare)
  • Phase optimized skeletal mechanisms for engine simulations
  • 2010
  • Ingår i: Combustion Theory and Modelling. - : Informa UK Limited. - 1364-7830 .- 1741-3559. ; 14:3, s. 295-313
  • Tidskriftsartikel (refereegranskat)abstract
    • Adaptive chemistry is based on the principle that instead of having one comprehensive model describing the entire range of chemical source term space (typically parameters related to temperature, pressure and species concentrations), a set of computationally simpler models are used, each describing a local region (in multidimensional space) or phases (in zero-dimensional space). In this work, an adaptive chemistry method based on phase optimized skeletal mechanisms (POSM) is applied to a 96 species n-heptane-isooctane mechanism within a two-zone zero-dimensional stochastic reactor model (SRM) for an spark-ignition (SI) Engine. Two models differing only in the extent of reduction in the phase mechanism, gave speed-up factors of 2.7 and 10. The novelty and emphasis of this study is the use of machine learning techniques to decide where the phases are and to produce a usable phase recognition. The combustion process is automatically divided up into an 'optimal' set of phases through machine learning clustering based on fuzzy logic predicates involving a necessity parameter (a measure giving an indication whether a species should be included in the mechanism or not). The mechanism of each phase is reduced from the full mechanism based on this necessity parameter with respect to the conditions of that phase. The algorithm to decide which phase the process is in is automatically determined by another machine learning method that produces decision trees. The decision tree is made up of asking whether the mass fraction values were above or below given values. Two POSM studies were done, a conservative POSM where the species in each phase are eliminated based on a necessity parameter threshold (speed-up 2.7) and a further reduced POSM where each phase was further reduced by hand (speed-up 10). The automated techniques of determining the phases and for creating the decision tree are very general and are not limited to the parameter choices of this paper. There is also no fundamental limit as to the size of the original detailed mechanism. The interfacing to include POSM in an application does not differ significantly from using the original detailed mechanism.
  •  
13.
  • Bood, Joakim, et al. (författare)
  • Knock in spark-ignition engines : End-gas temperature measurements using rotational CARS and detailed kinetic calculations of the autoignition process
  • 1997
  • Ingår i: SAE Technical Papers. - 400 Commonwealth Drive, Warrendale, PA, United States : SAE International. - 0148-7191.
  • Konferensbidrag (refereegranskat)abstract
    • Cycle-resolved end-gas temperatures were measured using dual-broadband rotational CARS in a single-cylinder spark-ignition engine. Simultaneous cylinder pressure measurements were used as an indicator for knock and as input data to numerical calculations. The chemical processes in the end-gas have been analysed with a detailed kinetic mechanism for mixtures of iso-octane and n-heptane at different Research Octane Numbers (RON'S). The end-gas is modelled as a homogeneous reactor that is compressed or expanded by the piston movement and the flame propagation in the cylinder. The calculated temperatures are in agreement with the temperatures evaluated from CARS measurements. It is found that calculations with different RON'S of the fuel lead to different levels of radical concentrations in the end-gas. The apperance of the first stage of the autoignition process is marginally influenced by the RON, while the ignition delay of the second stage is increased with increasing RON.
  •  
14.
  • Christensen, Magnus, et al. (författare)
  • Supercharged Homogeneous Charge Compression Ignition
  • 1998
  • Ingår i: SAE Transactions, Journal of Engines. - 0096-736X. ; 107:SAE Technical Paper 980787
  • Tidskriftsartikel (refereegranskat)abstract
    • The Homogeneous Charge Compression Ignition (HCCI) is the third alternative for combustion in the reciprocating engine. Here a homogeneous charge is used as in a spark-ignited engine, but the charge is compressed to autoignition as in a diesel. The main difference compared with the Spark Ignition (SI) engine is the lack of flame propagation and hence the independence from turbulence. Compared with the diesel engine, HCCI has a homogeneous charge and hence no problems associated with soot and NOdx formation. Earlier research on HCCI showed high efficiency and very low amounts of NOdx, but HC and CO were higher than in SI mode. It was not possible to achieve high IMEP values with HCCI, the limit being 5 bar. Supercharging is one way to dramatically increase IMEP. The influence of supercharging on HCCI was therefore experimentally investigated. Three different fuels were used during the experiments: iso-octane, ethanol and natural gas. Two different compression ratios were used, 17:1 and 19:1. The inlet pressure conditions were set to give 0, 1, or 2 bar of boost pressure. The highest attainable IMEP was 14 bar using natural gas as fuel at the lower compression ratio. The limit in achieving even higher IMEP was set by the high rate of combustion and a high peak pressure. Numerical calculations of the HCCI process have been performed for natural gas as fuel. The calculated ignition timings agreed well with the experimental findings. The numerical solution is, however, very sensitive to the composition of the natural gas.
  •  
15.
  • Erlandsson, Olof, et al. (författare)
  • Simulation of Hcci-Addressing Compression Ratio and Turbocharging
  • 2002
  • Ingår i: SAE Technical Papers.
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper focuses on the performance and efficiency of an HCCI (Homogenous Charge Compression Ignition) engine system running on natural gas or landfill gas for stationary applications. Zero-dimensional modelling and simulation of the engine, turbo, inlet and exhaust manifolds and inlet air conditioner (intercooler/heater) are used to study the effect of compression ratio and exhaust turbine size on maximum mean effective pressure and efficiency. The extended Zeldovich mechanism is used to estimate NO- formation in order to determine operation limits. Detailed chemical kinetics is used to predict ignition timing. Simulation of the in-cylinder process gives a minimum gl-value of 2.4 for natural gas, regardless of compression ratio. This is restricted by the NO formation for richer mixtures. Lower compression ratios allow higher inlet pressure and hence higher load, but it also reduces indicated efficiency. Given indicated mean effective pressure, IMEP and a fixed friction, FMEP the best brake efficiency was attained at compression ratios of 15:1 to 17:1, according to the simulations. Full system simulation using three different turbines, showed that the required inlet pressure could not be reached. At these low loads a high compression ratio enables lower inlet temperature. This provides higher mass flow and hence power output. The higher compression ratio also increases the indicated and brake efficiency. Very small turbines or advanced turbocharging technologies seem necessary in order to give acceptable specific power and brake efficiency.
  •  
16.
  • Franken, Tim, et al. (författare)
  • Gasoline engine performance simulation of water injection and low-pressure exhaust gas recirculation using tabulated chemistry
  • 2020
  • Ingår i: International Journal of Engine Research. - : SAGE Publications. - 1468-0874 .- 2041-3149. ; 21:10, s. 1857-1877
  • Tidskriftsartikel (refereegranskat)abstract
    • This work presents the assessment of direct water injection in spark-ignition engines using single cylinder experiments and tabulated chemistry-based simulations. In addition, direct water injection is compared with cooled low-pressure exhaust gas recirculation at full load operation. The analysis of the two knock suppressing and exhaust gas cooling methods is performed using the quasi-dimensional stochastic reactor model with a novel dual fuel tabulated chemistry model. To evaluate the characteristics of the autoignition in the end gas, the detonation diagram developed by Bradley and co-workers is applied. The single cylinder experiments with direct water injection outline the decreasing carbon monoxide emissions with increasing water content, while the nitrogen oxide emissions indicate only a minor decrease. The simulation results show that the engine can be operated at lambda = 1 at full load using water-fuel ratios of up to 60% or cooled low-pressure exhaust gas recirculation rates of up to 30%. Both technologies enable the reduction of the knock probability and the decrease in the catalyst inlet temperature to protect the aftertreatment system components. The strongest exhaust temperature reduction is found with cooled low-pressure exhaust gas recirculation. With stoichiometric air-fuel ratio and water injection, the indicated efficiency is improved to 40% and the carbon monoxide emissions are reduced. The nitrogen oxide concentrations are increased compared to the fuel-rich base operating conditions and the nitrogen oxide emissions decrease with higher water content. With stoichiometric air-fuel ratio and exhaust gas recirculation, the indicated efficiency is improved to 43% and the carbon monoxide emissions are decreased. Increasing the exhaust gas recirculation rate to 30% drops the nitrogen oxide emissions below the concentrations of the fuel-rich base operating conditions.
  •  
17.
  • Gogan, Adina, et al. (författare)
  • Knock modeling: an integrated tool for detailed chemistry and engine cycle simulation
  • 2003
  • Ingår i: Spark Ignition and Compression Ignition Engines Modeling. - 9780768013214
  • Konferensbidrag (refereegranskat)abstract
    • For the simultaneous evaluation of the influence on engine knock of both chemical conditions and global operating parameters, a combined tool was developed. Thus, a two-zone kinetic model for SI engine combustion calculation (Ignition) was implemented into an engine cycle simulation commercial code. The combined model predictions are compared with experimental data from a single-cylinder test engine. This shows that the model can accurately predict the knock onset and in-cylinder pressure and temperature for different lambda conditions, with and without EGR. The influence of nitric oxide amount from residual gas in relation with knock is further investigated. The created numerical tool represents a useful support for experimental measurements, reducing the number of tests required to assess the proper engine control strategies.
  •  
18.
  •  
19.
  • Gogan, Adina, et al. (författare)
  • Stochastic model for the investigation of the effect of inhomogeneities on engine knock
  • 2004
  • Ingår i: Proceedings of the 2004 Fall Technical Conference of the ASME Internal Combustion Engine Division. - 0791837467 ; , s. 399-408
  • Konferensbidrag (refereegranskat)abstract
    • A stochastic model based on a probability density function (PDF) approach was developed for the investigation of spark ignition (SI) engine knock conditions. The model is based on a two zone model, where the burned and unburned gases are described as stochastic reactors, and the movement of the turbulent flame front is expressed with a Wiebe function. Using a stochastic particle ensemble to represent the PDF of the scalar variables associated with the burned and unburned gases, allows the consideration of inhomogeneities in gas composition and temperature, as well as turbulence mixing effects. The turbulent mixing is described with the interaction by exchange with the mean model. A stochastic jump process is used for modeling the heat transfer, hence accounting for the temperature fluctuations and the fluid wall interaction. Detailed chemistry is used in the calculations. A parameter study investigates the effects of end gas inhomogeneities related to residual gas composition and temperature, on the autoignition process. adina.gogan@vok.lth.se.
  •  
20.
  • Gogan, Adina, et al. (författare)
  • Stochastic model for the investigation of the influence of turbulent mixing on engine knock
  • 2004
  • Ingår i: SAE Transactions Journal of Engines. - 0096-736X. ; 113:3, s. 1594-1603
  • Tidskriftsartikel (refereegranskat)abstract
    • A stochastic model based on a probability density function (PDF) was developed for the investigation of different conditions that determine knock in spark ignition (SI) engine, with focus on the turbulent mixing. The model used is based on a two-zone approach, where the burned and unburned gases are described as stochastic reactors. By using a stochastic ensemble to represent the PDF of the scalar variables associated with the burned and the unburned gases it is possible to investigate phenomena that are neglected by the regular existing models (as gas non-uniformity, turbulence mixing, or the variable gas-wall interaction). Two mixing models are implemented for describing the turbulent mixing: the deterministic interaction by exchange with the mean (IEM) model and the stochastic coalescence/ dispersal (C/D) model. Also, a stochastic jump process is employed for modeling the irregularities in the heat transfer. Parameter studies are carried out in order to assess the influence of the turbulence intensity and of the fluctuations in the gas - wall interactions.
  •  
21.
  • Grandin, Börje, et al. (författare)
  • Heat Release in the End-Gas Prior to Knock in Lean, Rich and Stoichiometric Mixtures With and Without Egr
  • 2002
  • Ingår i: SAE Technical Papers. - 0148-7191.
  • Tidskriftsartikel (refereegranskat)abstract
    • SI Engine knock is caused by autoignition in the unburnt part of the mixture (end-gas) ahead of the propagating flame. Autoignition of the end-gas occurs when the temperature and pressure exceeds a critical limit when comparatively slow reactions - releasing moderate amounts of heat - transform into ignition and rapid heat release. In this paper the difference in the heat released in the end-gas - by low temperature chemistry - between lean, rich, stochiometric, and stoichiometric mixtures diluted with cooled EGR was examined by measuring the temperature in the end-gas with Dual Broadband Rotational CARS. The measured temperature history was compared with an isentropic temperature calculated from the cylinder pressure trace. The experimentally obtained values for knock onset were compared with results from a two-zone thermodynamic model including detailed chemistry modelling of the end-gas reactions.
  •  
22.
  • Hermann, Fredrik, et al. (författare)
  • Flammability limits of Low Btu gases : Computations in a perfectly stirred reactor and experiments
  • 2001
  • Ingår i: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations. - 9780791878514 ; 2
  • Konferensbidrag (refereegranskat)abstract
    • The demand for gas turbines suitable for Low Btu gases is increasing worldwide. This paper presents a theoretical and experimental investigation of the flammability limits of Low Btu gases for gas turbine applications. Most modern gas turbines utilize premixed combustion, making it important to know at which fuel-air ratio the flame extinguishes. The flammability limit for a gaseous fuel is a property, which is coupled to both thermodynamic quantities and the shape of the combustion chamber. Consequently, this property is characteristic for each combustor and for each fuel. The experiments were made in an atmospheric pressure premixed combustor at Alstom Power Technology Ltd. Switzerland, adapted for Low Btu gaseous fuels. Five different residual gases from chemical factories were investigated. The gases consisted of methane, carbon monoxide, hydrogen and nitrogen, with lower heating values about 2-3.5 MJ/kg for all examined gases (Table 1). A steady state Perfectly Stirred Reactor (PSR) was used as a model for the primary combustion zone. The reactions were modeled by a detailed mechanism for methane with 61 species and 667 reactions, developed by Warnatz [1]. The PSR calculations were done by decreasing the residence time until the combustion in the PSR extinguished. These calculations were repeated for different equivalence ratios to obtain the relation between the residence time and the limit of flammability. The calculations showed a relationship between the residence time in the PSR and the extinction point. It was found that the computed values of the flammability limits, or more correctly called stability limits, qualitatively follow the experimental results. However, since the computational results are strongly dependent on the residence time, a comparison with the experiments must include the residence time of the real burner, which is difficult to define.
  •  
23.
  • Hiltner, J, et al. (författare)
  • Homogeneous charge compression ignition operation with natural gas: Fuel composition implications
  • 2003
  • Ingår i: Journal of Engineering for Gas Turbines and Power. - : ASME International. - 1528-8919 .- 0742-4795. ; 125:3, s. 837-844
  • Tidskriftsartikel (refereegranskat)abstract
    • Homogeneous charge compression ignition (HCCI) is a potentially attractive operating mode for stationary natural gas engines. Increasing demand for efficient, clean burning engines for electrical power generation provides an opportunity to utilize HCCI combustion if several inherent difficulties can be overcome. Fuel composition, particularly the higher hydrocarbon content (ethane, propane, and butane) of the fuel is of primary concern. Fuel composition influences HCCI operation both in terms of design, via compression ratio and initial charge temperature, and in terms of engine control. It has been demonstrated that greater concentrations of higher hydrocarbons tend to lower the ignition temperature of the mixture significantly. The purpose of this paper is to demonstrate, through simulation, the effect of fuel composition on combustion in HCCI engines. Engine performance over a range of fuels from pure methane to more typical natural gas blends is investigated. This includes both the impact of various fuels and the sensitivity of engine operation for any given fuel. Results are presented at a fixed equivalence ratio, compression ratio, and engine speed to isolate the effect of fuel composition. Conclusions are drawn as to how the difficulties arising from gas composition variations may affect the future marketability of these engines.
  •  
24.
  • Hoyermann, K, et al. (författare)
  • A detailed chemical reaction mechanism for the oxidation of hydrocarbons and its application to the analysis of benzene formation in fuel-rich premixed laminar acetylene and propene flames
  • 2004
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9084. ; 6:14, s. 3824-3835
  • Tidskriftsartikel (refereegranskat)abstract
    • On the basis of existing detailed kinetic schemes a general and consistent mechanism of the oxidation of hydrocarbons and the formation of higher hydrocarbons was compiled for computational studies covering the characteristic properties of a wide range of combustion processes. Computed ignition delay times of hydrocarbon -oxygen mixtures (CH4-, C2H6-, C3H8-, n-C4H10-, CH4 + C2H6-, C2H4, C3H6-O-2) match the experimental values. The calculated absolute flame velocities of laminar premixed flames (CH4-, C2H6-, C3H8-, n-C4H10-, C2H4-, C3H6-, and C2H2-air) and the dependence on mixture strength agree with the latest experimental investigations reported in the literature. With the same model concentration profiles for major and intermediate species in fuel-rich, non-sooting, premixed C2H2-, C3H6- air flames and a mixed C2H2/C3H6 (1:1)-air flame at 50 mbar are predicted in good agreement with experimental data. An analysis of reaction pathways shows for all three flames that benzene formation can be described by propargyl combination.
  •  
25.
  • Lehtiniemi, Harry, et al. (författare)
  • Modeling Diesel Engine Combustion with Detailed Chemistry Using a Progress Variable Approach
  • 2005
  • Ingår i: SAE technical paper series.
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we present an unsteady flamelet progress variable approach for diesel engine CFD combustion modelling. The progress variable is based on sensible enthalpy integrated over the flamelet and describes the transient flamelet ignition process. By using an unsteady flamelet library for the progress variable, the impact of local effects, for example variations in the turbulence field, effects of wall heat transfer, etc., on the autoignition chemistry can be considered on a cell level. The coupling between the unsteady flamelet library and the transport equation for total enthalpy follows the ideas of the representative interactive flamelet approach. Since the progress variable gives a direct description of the state in the flamelet, the method can be compared to having a flamelet in each computational cell in the CFD grid. The progress variable approach is applied to high-EGR, late injection operating conditions, and we demonstrate that the model can be applied for 3D engine simulations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 47

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy