SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(McVicar T. R.) "

Sökning: WFRF:(McVicar T. R.)

  • Resultat 1-19 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Achberger, Christine, 1968, et al. (författare)
  • State of the Climate in 2011
  • 2012
  • Ingår i: Bulletin of the American Meteorological Society. - 0003-0007. ; 93:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-scale climate patterns influenced temperature and weather patterns around the globe in 2011. In particular, a moderate-to-strong La Nina at the beginning of the year dissipated during boreal spring but reemerged during fall. The phenomenon contributed to historical droughts in East Africa, the southern United States, and northern Mexico, as well the wettest two-year period (2010-11) on record for Australia, particularly remarkable as this follows a decade-long dry period. Precipitation patterns in South America were also influenced by La Nina. Heavy rain in Rio de Janeiro in January triggered the country's worst floods and landslides in Brazil's history. The 2011 combined average temperature across global land and ocean surfaces was the coolest since 2008, but was also among the 15 warmest years on record and above the 1981-2010 average. The global sea surface temperature cooled by 0.1 degrees C from 2010 to 2011, associated with cooling influences of La Nina. Global integrals of upper ocean heat content for 2011 were higher than for all prior years, demonstrating the Earth's dominant role of the oceans in the Earth's energy budget. In the upper atmosphere, tropical stratospheric temperatures were anomalously warm, while polar temperatures were anomalously cold. This led to large springtime stratospheric ozone reductions in polar latitudes in both hemispheres. Ozone concentrations in the Arctic stratosphere during March were the lowest for that period since satellite records began in 1979. An extensive, deep, and persistent ozone hole over the Antarctic in September indicates that the recovery to pre-1980 conditions is proceeding very slowly. Atmospheric carbon dioxide concentrations increased by 2.10 ppm in 2011, and exceeded 390 ppm for the first time since instrumental records began. Other greenhouse gases also continued to rise in concentration and the combined effect now represents a 30% increase in radiative forcing over a 1990 baseline. Most ozone depleting substances continued to fall. The global net ocean carbon dioxide uptake for the 2010 transition period from El Nino to La Nina, the most recent period for which analyzed data are available, was estimated to be 1.30 Pg C yr(-1), almost 12% below the 29-year long-term average. Relative to the long-term trend, global sea level dropped noticeably in mid-2010 and reached a local minimum in 2011. The drop has been linked to the La Nina conditions that prevailed throughout much of 2010-11. Global sea level increased sharply during the second half of 2011. Global tropical cyclone activity during 2011 was well-below average, with a total of 74 storms compared with the 1981-2010 average of 89. Similar to 2010, the North Atlantic was the only basin that experienced above-normal activity. For the first year since the widespread introduction of the Dvorak intensity-estimation method in the 1980s, only three tropical cyclones reached Category 5 intensity level-all in the Northwest Pacific basin. The Arctic continued to warm at about twice the rate compared with lower latitudes. Below-normal summer snowfall, a decreasing trend in surface albedo, and above-average surface and upper air temperatures resulted in a continued pattern of extreme surface melting, and net snow and ice loss on the Greenland ice sheet. Warmer-than-normal temperatures over the Eurasian Arctic in spring resulted in a new record-low June snow cover extent and spring snow cover duration in this region. In the Canadian Arctic, the mass loss from glaciers and ice caps was the greatest since GRACE measurements began in 2002, continuing a negative trend that began in 1987. New record high temperatures occurred at 20 m below the land surface at all permafrost observatories on the North Slope of Alaska, where measurements began in the late 1970s. Arctic sea ice extent in September 2011 was the second-lowest on record, while the extent of old ice (four and five years) reached a new record minimum that was just 19% of normal. On the opposite pole, austral winter and spring temperatures were more than 3 degrees C above normal over much of the Antarctic continent. However, winter temperatures were below normal in the northern Antarctic Peninsula, which continued the downward trend there during the last 15 years. In summer, an all-time record high temperature of -12.3 degrees C was set at the South Pole station on 25 December, exceeding the previous record by more than a full degree. Antarctic sea ice extent anomalies increased steadily through much of the year, from briefly setting a record low in April, to well above average in December. The latter trend reflects the dispersive effects of low pressure on sea ice and the generally cool conditions around the Antarctic perimeter.
  •  
2.
  • Arndt, D. S., et al. (författare)
  • STATE OF THE CLIMATE IN 2017
  • 2018
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 99:8, s. S1-S310
  • Forskningsöversikt (refereegranskat)
  •  
3.
  • Arndt, D. S., et al. (författare)
  • State of the Climate in 2016
  • 2017
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 98:8, s. S1-S280
  • Tidskriftsartikel (refereegranskat)abstract
    • In 2016, the dominant greenhouse gases released into Earth's atmosphere-carbon dioxide, methane, and nitrous oxide-continued to increase and reach new record highs. The 3.5 +/- 0.1 ppm rise in global annual mean carbon dioxide from 2015 to 2016 was the largest annual increase observed in the 58-year measurement record. The annual global average carbon dioxide concentration at Earth's surface surpassed 400 ppm (402.9 +/- 0.1 ppm) for the first time in the modern atmospheric measurement record and in ice core records dating back as far as 800000 years. One of the strongest El Nino events since at least 1950 dissipated in spring, and a weak La Nina evolved later in the year. Owing at least in part to the combination of El Nino conditions early in the year and a long-term upward trend, Earth's surface observed record warmth for a third consecutive year, albeit by a much slimmer margin than by which that record was set in 2015. Above Earth's surface, the annual lower troposphere temperature was record high according to all datasets analyzed, while the lower stratospheric temperature was record low according to most of the in situ and satellite datasets. Several countries, including Mexico and India, reported record high annual temperatures while many others observed near-record highs. A week-long heat wave at the end of April over the northern and eastern Indian peninsula, with temperatures surpassing 44 degrees C, contributed to a water crisis for 330 million people and to 300 fatalities. In the Arctic the 2016 land surface temperature was 2.0 degrees C above the 1981-2010 average, breaking the previous record of 2007, 2011, and 2015 by 0.8 degrees C, representing a 3.5 degrees C increase since the record began in 1900. The increasing temperatures have led to decreasing Arctic sea ice extent and thickness. On 24 March, the sea ice extent at the end of the growth season saw its lowest maximum in the 37-year satellite record, tying with 2015 at 7.2% below the 1981-2010 average. The September 2016 Arctic sea ice minimum extent tied with 2007 for the second lowest value on record, 33% lower than the 1981-2010 average. Arctic sea ice cover remains relatively young and thin, making it vulnerable to continued extensive melt. The mass of the Greenland Ice Sheet, which has the capacity to contribute similar to 7 m to sea level rise, reached a record low value. The onset of its surface melt was the second earliest, after 2012, in the 37-year satellite record. Sea surface temperature was record high at the global scale, surpassing the previous record of 2015 by about 0.01 degrees C. The global sea surface temperature trend for the 21st century-to-date of +0.162 degrees C decade(-1) is much higher than the longer term 1950-2016 trend of +0.100 degrees C decade(-1). Global annual mean sea level also reached a new record high, marking the sixth consecutive year of increase. Global annual ocean heat content saw a slight drop compared to the record high in 2015. Alpine glacier retreat continued around the globe, and preliminary data indicate that 2016 is the 37th consecutive year of negative annual mass balance. Across the Northern Hemisphere, snow cover for each month from February to June was among its four least extensive in the 47-year satellite record. Continuing a pattern below the surface, record high temperatures at 20-m depth were measured at all permafrost observatories on the North Slope of Alaska and at the Canadian observatory on northernmost Ellesmere Island. In the Antarctic, record low monthly surface pressures were broken at many stations, with the southern annular mode setting record high index values in March and June. Monthly high surface pressure records for August and November were set at several stations. During this period, record low daily and monthly sea ice extents were observed, with the November mean sea ice extent more than 5 standard deviations below the 1981-2010 average. These record low sea ice values contrast sharply with the record high values observed during 2012-14. Over the region, springtime Antarctic stratospheric ozone depletion was less severe relative to the 1991-2006 average, but ozone levels were still low compared to pre-1990 levels. Closer to the equator, 93 named tropical storms were observed during 2016, above the 1981-2010 average of 82, but fewer than the 101 storms recorded in 2015. Three basins-the North Atlantic, and eastern and western North Pacific-experienced above-normal activity in 2016. The Australian basin recorded its least active season since the beginning of the satellite era in 1970. Overall, four tropical cyclones reached the Saffir-Simpson category 5 intensity level. The strong El Nino at the beginning of the year that transitioned to a weak La Nina contributed to enhanced precipitation variability around the world. Wet conditions were observed throughout the year across southern South America, causing repeated heavy flooding in Argentina, Paraguay, and Uruguay. Wetter-than-usual conditions were also observed for eastern Europe and central Asia, alleviating the drought conditions of 2014 and 2015 in southern Russia. In the United States, California had its first wetter-than-average year since 2012, after being plagued by drought for several years. Even so, the area covered by drought in 2016 at the global scale was among the largest in the post-1950 record. For each month, at least 12% of land surfaces experienced severe drought conditions or worse, the longest such stretch in the record. In northeastern Brazil, drought conditions were observed for the fifth consecutive year, making this the longest drought on record in the region. Dry conditions were also observed in western Bolivia and Peru; it was Bolivia's worst drought in the past 25 years. In May, with abnormally warm and dry conditions already prevailing over western Canada for about a year, the human-induced Fort McMurray wildfire burned nearly 590000 hectares and became the costliest disaster in Canadian history, with $3 billion (U.S. dollars) in insured losses.
  •  
4.
  • Dunn, R. J. H., et al. (författare)
  • GLOBAL CLIMATE : State of the Climate in 2020
  • 2021
  • Ingår i: Bulletin of the American Meteorological Society. - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 102:8
  • Tidskriftsartikel (refereegranskat)
  •  
5.
  • Blunden, Jessica, et al. (författare)
  • State of the Climate in 2012
  • 2013
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 94:8, s. S1-S258
  • Tidskriftsartikel (refereegranskat)abstract
    • For the first time in serveral years, the El Nino-Southern Oscillation did not dominate regional climate conditions around the globe. A weak La Ni a dissipated to ENSOneutral conditions by spring, and while El Nino appeared to be emerging during summer, this phase never fully developed as sea surface temperatures in the eastern conditions. Nevertheless, other large-scale climate patterns and extreme weather events impacted various regions during the year. A negative phase of the Arctic Oscillation from mid-January to early February contributed to frigid conditions in parts of northern Africa, eastern Europe, and western Asia. A lack of rain during the 2012 wet season led to the worst drought in at least the past three decades for northeastern Brazil. Central North America also experienced one of its most severe droughts on record. The Caribbean observed a very wet dry season and it was the Sahel's wettest rainy season in 50 years. Overall, the 2012 average temperature across global land and ocean surfaces ranked among the 10 warmest years on record. The global land surface temperature alone was also among the 10 warmest on record. In the upper atmosphere, the average stratospheric temperature was record or near-record cold, depending on the dataset. After a 30-year warming trend from 1970 to 1999 for global sea surface temperatures, the period 2000-12 had little further trend. This may be linked to the prevalence of La Ni a-like conditions during the 21st century. Heat content in the upper 700 m of the ocean remained near record high levels in 2012. Net increases from 2011 to 2012 were observed at 700-m to 2000-m depth and even in the abyssal ocean below. Following sharp decreases in to the effects of La Ni a, sea levels rebounded to reach records highs in 2012. The increased hydrological cycle seen in recent years continued, with more evaporation in drier locations and more precipitation in rainy areas. In a pattern that has held since 2004, salty areas of the ocean surfaces and subsurfaces were anomalously salty on average, while fresher areas were anomalously fresh. Global tropical cyclone activity during 2012 was near average, with a total of 84 storms compared with the 1981-2010 average of 89. Similar to 2010 and 2011, the North Atlantic was the only hurricane basin that experienced above-normal activity. In this basin, Sandy brought devastation to Cuba and parts of the eastern North American seaboard. All other basins experienced either near-or below-normal tropical cyclone activity. Only three tropical cyclones reached Category 5 intensity-all in Bopha became the only storm in the historical record to produce winds greater than 130 kt south of 7 N. It was also the costliest storm to affect the Philippines and killed more than 1000 residents. Minimum Arctic sea ice extent in September and Northern Hemisphere snow cover extent in June both reached new record lows. June snow cover extent is now declining at a faster rate (-17.6% per decade) than September sea ice extent (-13.0% per decade). Permafrost temperatures reached record high values in northernmost Alaska. A new melt extent record occurred on 11-12 July on the Greenland ice sheet; 97% of the ice sheet showed some form of melt, four times greater than the average melt for this time of year. The climate in Antarctica was relatively stable overall. The largest maximum sea ice extent since records begain in 1978 was observed in September 2012. In the stratosphere, warm air led to the second smallest ozone hole in the past two decades. Even so, the springtime ozone layer above Antarctica likely will not return to its early 1980s state until about 2060. Following a slight decline associated with the global 2 emissions from fossil fuel combustion and cement production reached a record 9.5 +/- 0.5 Pg C in 2011 and a new record of 9.7 +/- 0.5 Pg C is estimated for 2012. Atmospheric CO2 concentrations increased by 2.1 ppm in 2012, to 392.6 ppm. In spring 2012, 2 concentration exceeded 400 ppm at 7 of the 13 Arctic observation sites. Globally, other greenhouse gases including methane and nitrous oxide also continued to rise in concentration and the combined effect now represents a 32% increase in radiative forcing over a 1990 baseline. Concentrations of most ozone depleting substances continued to fall.
  •  
6.
  • Ades, M., et al. (författare)
  • Global Climate : in State of the climate in 2019
  • 2020
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 101:8, s. S17-S127
  • Tidskriftsartikel (refereegranskat)
  •  
7.
  • Ades, M., et al. (författare)
  • GLOBAL CLIMATE
  • 2020
  • Ingår i: BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY. - 0003-0007 .- 1520-0477. ; 101:8
  • Tidskriftsartikel (refereegranskat)
  •  
8.
  • Blunden, Jessica, et al. (författare)
  • State of the climate in 2013
  • 2014
  • Ingår i: Bulletin of the American Meteorological Society. - 0003-0007. ; 95
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2014, American Meteorological Society. All rights reserved. In 2013, the vast majority of the monitored climate variables reported here maintained trends established in recent decades. ENSO was in a neutral state during the entire year, remaining mostly on the cool side of neutral with modest impacts on regional weather patterns around the world. This follows several years dominated by the effects of either La Niña or El Niño events. According to several independent analyses, 2013 was again among the 10 warmest years on record at the global scale, both at the Earth’s surface and through the troposphere. Some regions in the Southern Hemisphere had record or near-record high temperatures for the year. Australia observed its hottest year on record, while Argentina and New Zealand reported their second and third hottest years, respectively. In Antarctica, Amundsen-Scott South Pole Station reported its highest annual temperature since records began in 1957. At the opposite pole, the Arctic observed its seventh warmest year since records began in the early 20th century. At 20-m depth, record high temperatures were measured at some permafrost stations on the North Slope of Alaska and in the Brooks Range. In the Northern Hemisphere extratropics, anomalous meridional atmospheric circulation occurred throughout much of the year, leading to marked regional extremes of both temperature and precipitation. Cold temperature anomalies during winter across Eurasia were followed by warm spring temperature anomalies, which were linked to a new record low Eurasian snow cover extent in May. Minimum sea ice extent in the Arctic was the sixth lowest since satellite observations began in 1979. Including 2013, all seven lowest extents on record have occurred in the past seven years. Antarctica, on the other hand, had above-average sea ice extent throughout 2013, with 116 days of new daily high extent records, including a new daily maximum sea ice area of 19.57 million km2 reached on 1 October. ENSO-neutral conditions in the eastern central Pacific Ocean and a negative Pacific decadal oscillation pattern in the North Pacific had the largest impacts on the global sea surface temperature in 2013. The North Pacific reached a historic high temperature in 2013 and on balance the globally-averaged sea surface temperature was among the 10 highest on record. Overall, the salt content in nearsurface ocean waters increased while in intermediate waters it decreased. Global mean sea level continued to rise during 2013, on pace with a trend of 3.2 mm yr-1 over the past two decades. A portion of this trend (0.5 mm yr-1) has been attributed to natural variability associated with the Pacific decadal oscillation as well as to ongoing contributions from the melting of glaciers and ice sheets and ocean warming. Global tropical cyclone frequency during 2013 was slightly above average with a total of 94 storms, although the North Atlantic Basin had its quietest hurricane season since 1994. In the Western North Pacific Basin, Super Typhoon Haiyan, the deadliest tropical cyclone of 2013, had 1-minute sustained winds estimated to be 170 kt (87.5 m s-1) on 7 November, the highest wind speed ever assigned to a tropical cyclone. High storm surge was also associated with Haiyan as it made landfall over the central Philippines, an area where sea level is currently at historic highs, increasing by 200 mm since 1970. In the atmosphere, carbon dioxide, methane, and nitrous oxide all continued to increase in 2013. As in previous years, each of these major greenhouse gases once again reached historic high concentrations. In the Arctic, carbon dioxide and methane increased at the same rate as the global increase. These increases are likely due to export from lower latitudes rather than a consequence of increases in Arctic sources, such as thawing permafrost. At Mauna Loa, Hawaii, for the first time since measurements began in 1958, the daily average mixing ratio of carbon dioxide exceeded 400 ppm on 9 May. The state of these variables, along with dozens of others, and the 2013 climate conditions of regions around the world are discussed in further detail in this 24th edition of the State of the Climate series.
  •  
9.
  • McVicar, T.G., et al. (författare)
  • Wind speed climatology and trends for Australia, 1975–2006: Capturing the stilling phenomenon and comparison with near-surface reanalysis output
  • 2008
  • Ingår i: Geophys. Res. Lett.. ; 35
  • Tidskriftsartikel (refereegranskat)abstract
    • Near-surface wind speeds (u) measured by terrestrial anemometers show declines (a ‘stilling’) at a range of mid-latitude sites, but two gridded u datasets (a NCEP/NCAR reanalysis output and a surface-pressure-based u model) have not reproduced the stilling observed at Australian stations. We developed Australia-wide 0.01° resolution daily u grids by interpolating measurements from an expanded anemometer network for 1975–2006. These new grids represented the magnitude and spatial-variability of observed u trends, whereas grids from reanalysis systems (NCEP/NCAR, NCEP/DOE and ERA40) essentially did not, even when minimising the sea-breeze impact. For these new grids, the Australian-averaged u trend for 1975–2006 was −0.009 m s−1 a−1 (agreeing with earlier site-based studies) with stilling over 88% of the land-surface. This new dataset can be used in numerous environmental applications, including benchmarking general circulation models to improve the representation of key parameters that govern u estimation. The methodology implemented here can be applied globally.
  •  
10.
  • Vicente-Serrano, S. M., et al. (författare)
  • A comparison of temporal variability of observed and model-based pan evaporation over Uruguay (1973-2014)
  • 2018
  • Ingår i: International Journal of Climatology. - : Wiley. - 0899-8418. ; 38:1, s. 337-350
  • Tidskriftsartikel (refereegranskat)abstract
    • This study analyses variability and trends of atmospheric evaporative demand (AED) across Uruguay in the past four decades. Changes were assessed using pan evaporation measurements from 10 meteorological stations and compared to PenPan model calculations, which is a physically based model that employs meteorological data as input. Results demonstrate a high agreement between the observed AED and those estimated from the PenPan model. Both observations and model estimations agree on a high interannual variability in AED, though being statistically insignificant (p>0.05) at seasonal and annual scales. Given that AED shows high sensitivity to changes in relative humidity and sunshine duration, as a surrogate of solar radiation, the lack of significant trends in the AED observations and estimations over Uruguay can be linked to the insignificant trend found for these climate variables for the period from 1973 to 2014. This is the first study that reports Pan evaporation trends for this part of the world, helping to infill gaps for mid-latitude Southern Hemisphere areas, which are poorly represented in Pan evaporation trends.
  •  
11.
  • Azorin-Molina, C., et al. (författare)
  • A Decline of Observed Daily Peak Wind Gusts with Distinct Seasonality in Australia, 1941-2016
  • 2021
  • Ingår i: Journal of Climate. - : American Meteorological Society. - 0894-8755 .- 1520-0442. ; 34:8, s. 3103-3127
  • Tidskriftsartikel (refereegranskat)abstract
    • Wind gusts represent one of the main natural hazards due to their increasing socioeconomic and environmental impacts on, for example, human safety, maritime-terrestrial-aviation activities, engineering and insurance applications, and energy production. However, the existing scientific studies focused on observed wind gusts are relatively few compared to those on mean wind speed. In Australia, previous studies found a slowdown of near-surface mean wind speed, termed "stilling," but a lack of knowledge on the multidecadal variability and trends in the magnitude (wind speed maxima) and frequency (exceeding the 90th percentile) of wind gusts exists. A new homogenized daily peak wind gusts (DPWG) dataset containing 548 time series across Australia for 1941-2016 is analyzed to determine long-term trends in wind gusts. Here we show that both the magnitude and frequency of DPWG declined across much of the continent, with a distinct seasonality: negative trends in summer-spring-autumn and weak negative or nontrending (even positive) trends in winter. We demonstrate that ocean-atmosphere oscillations such as the Indian Ocean dipole and the southern annular mode partly modulate decadal-scale variations of DPWG. The long-term declining trend of DPWG is consistent with the "stilling" phenomenon, suggesting that global warming may have reduced Australian wind gusts.
  •  
12.
  • Azorin-Molina, Cesar, et al. (författare)
  • Evaluating anemometer drift: A statistical approach to correct biases in wind speed measurement
  • 2018
  • Ingår i: Atmospheric research. - : Elsevier BV. - 0169-8095. ; 203, s. 175-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies on observed wind variability have revealed a decline (termed “stilling”) of near-surface wind speed during the last 30–50 years over many mid-latitude terrestrial regions, particularly in the Northern Hemisphere. The well-known impact of cup anemometer drift (i.e., wear on the bearings) on the observed weakening of wind speed has been mentioned as a potential contributor to the declining trend. However, to date, no research has quantified its contribution to stilling based on measurements, which is most likely due to lack of quantification of the ageing effect. In this study, a 3-year field experiment (2014–2016) with 10-minute paired wind speed measurements from one new and one malfunctioned (i.e., old bearings) SEAC SV5 cup anemometer which has been used by the Spanish Meteorological Agency in automatic weather stations since mid-1980s, was developed for assessing for the first time the role of anemometer drift on wind speed measurement. The results showed a statistical significant impact of anemometer drift on wind speed measurements, with the old anemometer measuring lower wind speeds than the new one. Biases show a marked temporal pattern and clear dependency on wind speed, with both weak and strong winds causing significant biases. This pioneering quantification of biases has allowed us to define two regression models that correct up to 37% of the artificial bias in wind speed due to measurement with an old anemometer.
  •  
13.
  • Azorin-Molina, Cesar, et al. (författare)
  • Recent trends in wind speed across Saudi Arabia, 1978-2013: a break in the stilling
  • 2018
  • Ingår i: International Journal of Climatology. - : Wiley. - 0899-8418. ; 38
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyse recent trends and variability of observed near-surface wind speed from 19 stations across Saudi Arabia (SA) for 1978-2013. The raw wind speed data set was subject to a robust homogenization protocol, and the stations were then classified under three categories: (1) coast, (2) inland and (3) mountain stations. The results reveal a statistically significant (p<0.05) reduction of wind speed of -0.058m s(-1) dec(-1) at annual scale across SA, with decreases in winter (-0.100m s(-1) dec(-1)) and spring (-0.066m s(-1) dec(-1)) also detected, being non-significant in summer and autumn. The coast, inland and mountain series showed similar magnitude and significance of the declining trends across all SA series, except for summer when a decoupled variability and opposite trends of wind speed between the coast and inland series (significant declines: -0.101m s(-1) dec(-1) and -0.065m s(-1) dec(-1), respectively) and the high-elevation mountain series (significant increase: +0.041m s(-1) dec(-1)) were observed. Even though wind speed declines dominated across much of the country throughout the year, only a small number of stations showed statistically significant negative trends in summer and autumn. Most interestingly, a break in the stilling was observed in the last 12-year (2002-2013) period (+0.057m s(-1) dec(-1); not significant) compared to the significant slowdown detected in the previous 24-year (1978-2001) period (-0.089m s(-1) dec(-1)). This break in the slowdown of winds, even followed by a non-significant recovery trend, occurred in all seasons (and months) except for some winter months. Atmospheric circulation plays a key role in explaining the variability of winds, with the North Atlantic Oscillation positively affecting the annual wind speed, the Southern Oscillation displaying a significant negative relationship with winds in winter, spring and autumn, and the Eastern Atlantic negatively modulating winds in summer.
  •  
14.
  • Azorin-Molina, C., et al. (författare)
  • Trends of daily peak wind gusts in Spain and Portugal, 1961-2014
  • 2016
  • Ingår i: Journal of Geophysical Research-Atmospheres. - : American Geophysical Union (AGU). - 2169-897X. ; 121:3, s. 1059-1078
  • Tidskriftsartikel (refereegranskat)abstract
    • Given the inconsistencies of wind gust trends under the widespread decline in near-surface wind speed (stilling), our study aimed to assess trends of observed daily peak wind gusts (DPWG) across Spain and Portugal for 1961-2014 by analyzing trends of (i) the frequency (90th percentile) and (ii) the magnitude (wind speed maxima) of DPWG. Wind gust series were homogenized on a daily basis, using MM5-simulated series as reference, resulting in 80 suitable station-based data sets. The average DPWG 90th percentile frequency declined by -1.49ddecade(-1) (p<0.05) annually. This showed marked seasonal differences: decreasing in winter (-0.75ddecade(-1); p<0.05) and increasing in summer (+0.18ddecade(-1); p>0.10). A negligible trend was calculated for the annual magnitude of DPWG (-0.005ms(-1) decade(-1); p>0.10), with distinct seasonality: declining in winter (-0.168ms(-1) decade(-1); p<0.10) and increasing in summer (+0.130ms(-1) decade(-1); p<0.05). Combined, these results reveal less frequent and declining DPWG during the cold semester (November-April) and more frequent and increasing DPWG during the warm semester (May-October). Large-scale atmospheric changes such as the North Atlantic Oscillation Index (negative correlations similar to-0.4--0.6; p<0.05) and the Jenkinson and Collison scheme (positive correlations mainly with Westerly regime: similar to+0.5-0.6; p<0.05) partly account for the decadal fluctuations of both frequency and magnitude of DPWG, particularly in winter. However, the North Atlantic Oscillation index-DPWG relationships are smaller in spring, summer, and autumn (similar to-0.1--0.2; p>0.10), especially for the frequency, suggesting the role of local-to-mesoscale drivers.
  •  
15.
  • Vicente-Serrano, S. M., et al. (författare)
  • Global Assessment of the Standardized Evapotranspiration Deficit Index (SEDI) for Drought Analysis and Monitoring
  • 2018
  • Ingår i: Journal of Climate. - : American Meteorological Society. - 0894-8755 .- 1520-0442. ; 31:14, s. 5371-5393
  • Tidskriftsartikel (refereegranskat)abstract
    • This article developed and implemented a new methodology for calculating the standardized evapotranspiration deficit index (SEDI) globally based on the log-logistic distribution to fit the evaporation deficit (ED), the difference between actual evapotranspiration (ETa) and atmospheric evaporative demand (AED). Our findings demonstrate that, regardless of the AED dataset used, a log-logistic distribution most optimally fitted the ED time series. As such, in many regions across the terrestrial globe, the SEDI is insensitive to the AED method used for calculation, with the exception of winter months and boreal regions. The SEDI showed significant correlations (p < 0.05) with the standardized precipitation evapotranspiration index (SPEI) across a wide range of regions, particularly for short (<3 month) SPEI time scales. This work provides a robust approach for calculating spatially and temporally comparable SEDI estimates, regardless of the climate region and land surface conditions, and it assesses the performance and the applicability of the SEDI to quantify drought severity across varying crop and natural vegetation areas.
  •  
16.
  • Walker, Anthony P., et al. (författare)
  • Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2
  • 2021
  • Ingår i: New Phytologist. - : John Wiley & Sons. - 0028-646X .- 1469-8137. ; 229:5, s. 2413-2445
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric carbon dioxide concentration ([CO2]) is increasing, which increases leaf‐scale photosynthesis and intrinsic water‐use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substantial global terrestrial carbon sink would slow the rate of [CO2] increase and thus climate change. However, ecosystem CO2 responses are complex or confounded by concurrent changes in multiple agents of global change and evidence for a [CO2]‐driven terrestrial carbon sink can appear contradictory. Here we synthesize theory and broad, multidisciplinary evidence for the effects of increasing [CO2] (iCO2) on the global terrestrial carbon sink. Evidence suggests a substantial increase in global photosynthesis since pre‐industrial times. Established theory, supported by experiments, indicates that iCO2 is likely responsible for about half of the increase. Global carbon budgeting, atmospheric data, and forest inventories indicate a historical carbon sink, and these apparent iCO2 responses are high in comparison to experiments and predictions from theory. Plant mortality and soil carbon iCO2 responses are highly uncertain. In conclusion, a range of evidence supports a positive terrestrial carbon sink in response to iCO2, albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.
  •  
17.
  • Zhang, G. F., et al. (författare)
  • Rapid urbanization induced daily maximum wind speed decline in metropolitan areas: A case study in the Yangtze River Delta (China)
  • 2022
  • Ingår i: Urban Climate. - : Elsevier BV. - 2212-0955. ; 43
  • Tidskriftsartikel (refereegranskat)abstract
    • Wind extremes cause many environmental and natural hazard related problems globally, particularly in heavily populated metropolitan areas. However, the underlying causes of maximum wind speed variability in urbanized regions remain largely unknown. Here, we investigated how rapid urbanization in the Yangtze River Delta (YRD), China, impacted daily maximum wind speed (DMWS) between 1990 and 2015, based on near-surface (10 m height) DMWS observations, reanalysis datasets, and night-time lighting data (a proxy for urbanization). The station observation shows that annual DMWS in the YRD significantly (p < 0.05) declined during 1990-2015, by -0.209 m s(-1) decade(-1), while slightly (p > 0.1) positive trends were found in NCEP-NCAR1 (+0.048 m s(-1) decade(-1)) and ERA5 (+0.027 m s(-1) decade(-1)). An increasing divergence between the reanalysis output and the station observation since 2005 was found, and those stations located in areas with high rates of urbanization show the strongest negative annual DMWS trend, implying the key role of urbanization in weakening DMWS. This finding is supported by sensitivity experiments conducted using a regional climate model (RegCM4) forced with both 1990 and 2015 land-use and land-cover (LULC) data, where the simulated DMWS using the 2015 LULC data was lower than that simulated using the 1990 LULC data.
  •  
18.
  • Zhang, Gangfeng, et al. (författare)
  • Uneven Warming Likely Contributed to Declining Near-Surface Wind Speeds in Northern China Between 1961 and 2016
  • 2021
  • Ingår i: Journal of Geophysical Research-Atmospheres. - : American Geophysical Union (AGU). - 2169-897X .- 2169-8996. ; 126:11
  • Tidskriftsartikel (refereegranskat)abstract
    • A decline in mean near-surface (10 m) wind speed has been widely reported for many land regions over recent decades, yet the underlying cause(s) remains uncertain. This study investigates changes in near-surface wind speed over northern China from 1961 to 2016, and analyzes the associated physical mechanisms using station observations, reanalysis products and model simulations from the Community Atmosphere Model version 5.1 (CAM5). The homogenized near-surface wind speed shows a significantly (p < 0.05) decline trend of -0.103 m s(-1 )decade(-1), which stabilized from the 1990s onwards. Similar negative trends are observed for all seasons, with the strongest trends occurring in the central and eastern parts of northern China. Fast warming has occurred at high-latitudes (i.e., >50 degrees N) in recent decades, which has weakened the annual and seasonal meridional air temperature gradient (-0.33 degrees C to -0.12 degrees C dec(-1), p < 0.05, except autumn) between these regions (50 degrees-60 degrees N, 75 degrees-135 degrees E) and the northern China zone (35 degrees-45 degrees N, 75 degrees-135 degrees E). This caused a significant (p < 0.05) decrease in annual and seasonal pressure gradient (-0.43 to -0.20 hPa dec(-1)) between the two zones, which contributed to the slowdown of winds. CAM5 simulations demonstrate that spatially uneven air temperature increases and near-surface wind speed decreases over northern China can be realistically reproduced using the so-called "all forcing" simulation, while the "natural only forcing" simulation fails to realistically simulate the uneven warming patterns and declines in near-surface wind speed over most of northern China, except for summer.
  •  
19.
  • Zhang, Gangfeng, et al. (författare)
  • Variability of Daily Maximum Wind Speed across China, 1975–2016: An Examination of Likely Causes
  • 2020
  • Ingår i: Journal of Climate. - 0894-8755 .- 1520-0442. ; 33:7, s. 2793-2816
  • Tidskriftsartikel (refereegranskat)abstract
    • Assessing change in daily maximum wind speed and its likely causes is crucial for many applications such as wind power generation and wind disaster risk governance. Multidecadal variability of observed near-surface daily maximum wind speed (DMWS) from 778 stations over China is analyzed for 1975–2016. A robust homogenization protocol using the R package Climatol was applied to the DMWS observations. The homogenized dataset displayed a significant (p < 0.05) declining trend of −0.038 m s−1 decade−1 for all China annually, with decreases in winter (−0.355 m s−1 decade−1, p < 0.05) and autumn (−0.108 m s−1 decade−1; p < 0.05) and increases in summer (+0.272 m s−1 decade−1, p < 0.05) along with a weak recovery in spring (+0.032 m s−1 decade−1; p > 0.10); that is, DMWS declined during the cold semester (October–March) and increased during the warm semester (April–September). Correlation analysis of the Arctic Oscillation, the Southern Oscillation, and the west Pacific modes exhibited significant correlation with DMWS variability, unveiling their complementarity in modulating DMWS. Further, we explored potential physical processes relating to the atmospheric circulation changes and their impacts on DMWS and found that 1) overall weakened horizontal airflow [large-scale mean horizontal pressure gradient (from −0.24 to +0.02 hPa decade−1) and geostrophic wind speed (from −0.6 to +0.6 m s−1 decade−1)], 2) widely decreased atmospheric vertical momentum transport [atmospheric stratification thermal instability (from −3 to +1.5 decade−1) and vertical wind shear (from −0.4 to +0.2 m s−1 decade−1)], and 3) decreased extratropical cyclones frequency (from −0.3 to 0 month decade−1) are likely causes of DMWS change.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-19 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy