SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mena E. Delgado) "

Sökning: WFRF:(Mena E. Delgado)

  • Resultat 1-25 av 29
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Jong, R. S., et al. (författare)
  • 4MOST : Project overview and information for the First Call for Proposals
  • 2019
  • Ingår i: The Messenger. - : European Southern Observatory. - 0722-6691. ; 175, s. 3-11
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • We introduce the 4-metre Multi-Object Spectroscopic Telescope (4MOST), a new high-multiplex, wide-field spectroscopic survey facility under development for the four-metre-class Visible and Infrared Survey Telescope for Astronomy (VISTA) at Paranal. Its key specifications are: a large field of view (FoV) of 4.2 square degrees and a high multiplex capability, with 1624 fibres feeding two low-resolution spectrographs (R = λ/Δλ ~ 6500), and 812 fibres transferring light to the high-resolution spectrograph (R ~ 20 000). After a description of the instrument and its expected performance, a short overview is given of its operational scheme and planned 4MOST Consortium science; these aspects are covered in more detail in other articles in this edition of The Messenger. Finally, the processes, schedules, and policies concerning the selection of ESO Community Surveys are presented, commencing with a singular opportunity to submit Letters of Intent for Public Surveys during the first five years of 4MOST operations.
  •  
2.
  • Tinetti, Giovanna, et al. (författare)
  • The EChO science case
  • 2015
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 40:2-3, s. 329-391
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune-all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10(-4) relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 mu m with a goal of covering from 0.4 to 16 mu m. Only modest spectral resolving power is needed, with R similar to 300 for wavelengths less than 5 mu m and R similar to 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m(2) is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m(2) telescope, diffraction limited at 3 mu m has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300-3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright "benchmark" cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO's launch and enable the atmospheric characterisation of hundreds of planets.
  •  
3.
  • Gilmore, G., et al. (författare)
  • The Gaia-ESO Public Spectroscopic Survey : Motivation, implementation, GIRAFFE data processing, analysis, and final data products star
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Gaia-ESO Public Spectroscopic Survey is an ambitious project designed to obtain astrophysical parameters and elemental abundances for 100 000 stars, including large representative samples of the stellar populations in the Galaxy, and a well-defined sample of 60 (plus 20 archive) open clusters. We provide internally consistent results calibrated on benchmark stars and star clusters, extending across a very wide range of abundances and ages. This provides a legacy data set of intrinsic value, and equally a large wide-ranging dataset that is of value for the homogenisation of other and future stellar surveys and Gaia's astrophysical parameters. Aims. This article provides an overview of the survey methodology, the scientific aims, and the implementation, including a description of the data processing for the GIRAFFE spectra. A companion paper introduces the survey results. Methods. Gaia-ESO aspires to quantify both random and systematic contributions to measurement uncertainties. Thus, all available spectroscopic analysis techniques are utilised, each spectrum being analysed by up to several different analysis pipelines, with considerable effort being made to homogenise and calibrate the resulting parameters. We describe here the sequence of activities up to delivery of processed data products to the ESO Science Archive Facility for open use. Results. The Gaia-ESO Survey obtained 202 000 spectra of 115 000 stars using 340 allocated VLT nights between December 2011 and January 2018 from GIRAFFE and UVES. Conclusions. The full consistently reduced final data set of spectra was released through the ESO Science Archive Facility in late 2020, with the full astrophysical parameters sets following in 2022. A companion article reviews the survey implementation, scientific highlights, the open cluster survey, and data products.
  •  
4.
  • Randich, S., et al. (författare)
  • The Gaia-ESO Public Spectroscopic Survey : Implementation, data products, open cluster survey, science, and legacy
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. In the last 15 years different ground-based spectroscopic surveys have been started (and completed) with the general aim of delivering stellar parameters and elemental abundances for large samples of Galactic stars, complementing Gaia astrometry. Among those surveys, the Gaia-ESO Public Spectroscopic Survey, the only one performed on a 8m class telescope, was designed to target 100 000 stars using FLAMES on the ESO VLT (both Giraffe and UVES spectrographs), covering all the Milky Way populations, with a special focus on open star clusters. Aims. This article provides an overview of the survey implementation (observations, data quality, analysis and its success, data products, and releases), of the open cluster survey, of the science results and potential, and of the survey legacy. A companion article reviews the overall survey motivation, strategy, Giraffe pipeline data reduction, organisation, and workflow. Methods. We made use of the information recorded and archived in the observing blocks; during the observing runs; in a number of relevant documents; in the spectra and master catalogue of spectra; in the parameters delivered by the analysis nodes and the working groups; in the final catalogue; and in the science papers. Based on these sources, we critically analyse and discuss the output and products of the Survey, including science highlights. We also determined the average metallicities of the open clusters observed as science targets and of a sample of clusters whose spectra were retrieved from the ESO archive. Results. The Gaia-ESO Survey has determined homogeneous good-quality radial velocities and stellar parameters for a large fraction of its more than 110 000 unique target stars. Elemental abundances were derived for up to 31 elements for targets observed with UVES. Lithium abundances are delivered for about 1/3 of the sample. The analysis and homogenisation strategies have proven to be successful; several science topics have been addressed by the Gaia-ESO consortium and the community, with many highlight results achieved. Conclusions. The final catalogue will be released through the ESO archive in the first half of 2022, including the complete set of advanced data products. In addition to these results, the Gaia-ESO Survey will leave a very important legacy, for several aspects and for many years to come.
  •  
5.
  • Smiljanic, R., et al. (författare)
  • The Gaia-ESO Survey: The analysis of high-resolution UVES spectra of FGK-type stars
  • 2014
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 570
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The ongoing Gaia-ESO Public Spectroscopic Survey is using FLAMES at the VLT to obtain high-quality medium-resolution Giraffe spectra for about 10(5) stars and high-resolution UVES spectra for about 5000 stars. With UVES, the Survey has already observed 1447 FGK-type stars. Aims. These UVES spectra are analyzed in parallel by several state-of-the-art methodologies. Our aim is to present how these analyses were implemented, to discuss their results, and to describe how a final recommended parameter scale is defined. We also discuss the precision (method-to-method dispersion) and accuracy (biases with respect to the reference values) of the final parameters. These results are part of the Gaia-ESO second internal release and will be part of its first public release of advanced data products. Methods. The final parameter scale is tied to the scale defined by the Gaia benchmark stars, a set of stars with fundamental atmospheric parameters. In addition, a set of open and globular clusters is used to evaluate the physical soundness of the results. Each of the implemented methodologies is judged against the benchmark stars to define weights in three different regions of the parameter space. The final recommended results are the weighted medians of those from the individual methods. Results. The recommended results successfully reproduce the atmospheric parameters of the benchmark stars and the expected T-eff-log g relation of the calibrating clusters. Atmospheric parameters and abundances have been determined for 1301 FGK-type stars observed with UVES. The median of the method-to-method dispersion of the atmospheric parameters is 55K for T-eff, 0.13dex for log g and 0.07 dex for [Fe/H]. Systematic biases are estimated to be between 50-100 K for T-eff, 0.10-0.25 dex for log g and 0.05-0.10 dex for [Fe/H]. Abundances for 24 elements were derived: C, N, O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ba, Nd, and Eu. The typical method-to-method dispersion of the abundances varies between 0.10 and 0.20 dex. Conclusions. The Gaia-ESO sample of high-resolution spectra of FGK-type stars will be among the largest of its kind analyzed in a homogeneous way. The extensive list of elemental abundances derived in these stars will enable significant advances in the areas of stellar evolution and Milky Way formation and evolution.
  •  
6.
  • Hatzidimitriou, D., et al. (författare)
  • The Gaia-ESO Survey : The inner disc, intermediate-Age open cluster Pismis 18
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 626
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Pismis 18 is a moderately populated, intermediate-Age open cluster located within the solar circle at a Galactocentric distance of about seven kpc. Few open clusters have been studied in detail in the inner disc region before the Gaia-ESO Survey. Aims. New data from the Gaia-ESO Survey allowed us to conduct an extended radial velocity membership study as well as spectroscopic metallicity and detailed chemical abundance measurements for this cluster. Methods. Gaia-ESO Survey data for 142 potential members, lying on the upper main sequence and on the red clump, yielded radial velocity measurements, which, together with proper motion measurements from the Gaia Second Data Release (Gaia DR2), were used to determine the systemic velocity of the cluster and membership of individual stars. Photometry from Gaia DR2 was used to re-determine cluster parameters based on high confidence member stars only. Cluster abundance measurements of six radial-velocity member stars with UVES high-resolution spectroscopy are presented for 23 elements. Results. The average radial velocity of 26 high confidence members is-27.5 ± 2.5 (std) km s-1 with an average proper motion of pmra =-5.65 ± 0.08 (std) mas yr-1 and pmdec =-2.29 ± 0.11 (std) mas yr-1. According to the new estimates, based on high confidence members, Pismis 18 has an age of τ = 700+40-50 Myr, interstellar reddening of E(B-V) = 0.562+0.012-0.026 mag and a de-reddened distance modulus of DM0 = 11.96+0.10-0.24 mag. The median metallicity of the cluster (using the six UVES stars) is [Fe/H] = +0.23 ± 0.05 dex, with [α/Fe] = 0.07 ± 0.13 and a slight enhancement of s-and r-neutron-capture elements. Conclusions. With the present work, we fully characterized the open cluster Pismis 18. We confirmed its present location in the inner disc. We estimated a younger age than the previous literature values and we gave, for the first time, its metallicity and its detailed abundances. Its [α/Fe] and [s-process/Fe], both slightly super-solar, are in agreement with other inner-disc open clusters observed by the Gaia-ESO survey.
  •  
7.
  • Hoyer, S., et al. (författare)
  • TOI-220b: a warm sub-Neptune discovered by TESS
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 505:3, s. 3361-3379
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we report the discovery of TOI-220b, a new sub-Neptune detected by the Transiting Exoplanet Survey Satellite (TESS) and confirmed by radial velocity follow-up observations with the HARPS spectrograph. Based on the combined analysis of TESS transit photometry and high precision radial velocity measurements, we estimate a planetary mass of 13.8 +/- 1.0M(circle plus) and radius of 3.03 +/- 0.15R(circle plus), implying a bulk density of 2.73 +/- 0.47. TOI-220b orbits a relative bright (V=10.4) and old (10.1 +/- 1.4Gyr) K dwarf star with a period of similar to 10.69d. Thus, TOI-220b is a new warm sub-Neptune with very precise mass and radius determinations. A Bayesian analysis of the TOI-220b internal structure indicates that due to the strong irradiation it receives, the low density of this planet could be explained with a steam atmosphere in radiative-convective equilibrium and a supercritical water layer on top of a differentiated interior made of a silicate mantle and a small iron core.
  •  
8.
  • Esposito, M., et al. (författare)
  • HD 219666 b: a hot-Neptune from TESS Sector 1
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 623:623
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the confirmation and mass determination of a transiting planet orbiting the old and inactive G7 dwarf star HD219666 (M-star = 0.92 +/- 0.03 M-circle dot, R-star = 1.03 +/- 0.03 R-circle dot, tau(star) = 10 +/- 2 Gyr). With a mass of M-b = 16.6 +/- 1.3 M-circle plus, a radius of R-b = 4.71 +/- 0.17 R-circle plus, and an orbital period of P-orb similar or equal to 6 days, HD219666 b is a new member of a rare class of exoplanets: the hot-Neptunes. The Transiting Exoplanet Survey Satellite (TESS) observed HD219666 (also known as TOI-118) in its Sector 1 and the light curve shows four transit-like events, equally spaced in time. We confirmed the planetary nature of the candidate by gathering precise radial-velocity measurements with the High Accuracy Radial velocity Planet Searcher (HARPS) at ESO 3.6 m. We used the co-added HARPS spectrum to derive the host star fundamental parameters (T-eff = 5527 +/- 65 K, log g(star) = 4.40 +/- 0.11 (cgs), [Fe/H] = 0.04 +/- 0.04 dex, log R-HK' = -5.07 +/- 0.03), as well as the abundances of many volatile and refractory elements. The host star brightness (V = 9.9) makes it suitable for further characterisation by means of in-transit spectroscopy. The determination of the planet orbital obliquity, along with the atmospheric metal-to-hydrogen content and thermal structure could provide us with important clues on the formation mechanisms of this class of objects.
  •  
9.
  • Lanzafame, A. C., et al. (författare)
  • Gaia-ESO Survey: Analysis of pre-main sequence stellar spectra
  • 2015
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 576
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Gaia-ESO Public Spectroscopic Survey is obtaining high-quality spectroscopy of some 100 000 Milky Way stars using the FLAMES spectrograph at the VLT, down to V = 19 mag, systematically covering all the main components of the Milky Way and providing the first homogeneous overview of the distributions of kinematics and chemical element abundances in the Galaxy. Observations of young open clusters, in particular, are giving new insights into their initial structure, kinematics, and their subsequent evolution. Aims. This paper describes the analysis of UVES and GIRAFFE spectra acquired in the fields of young clusters whose population includes pre-main sequence (PMS) stars. The analysis is applied to all stars in such fields, regardless of any prior information on membership, and provides fundamental stellar atmospheric parameters, elemental abundances, and PMS-specific parameters such as veiling, accretion, and chromospheric activity. Methods. When feasible,different methods were used to derive raw parameters (e. g. line equivalent widths) fundamental atmospheric parameters and derived parameters (e. g. abundances). To derive some of these parameters, we used methods that have been extensively used in the past and new ones developed in the context of the Gaia-ESO survey enterprise. The internal precision of these quantities was estimated by inter-comparing the results obtained by these different methods, while the accuracy was estimated by comparison with independent external data, such as effective temperature and surface gravity derived from angular diameter measurements, on a sample of benchmarks stars. A validation procedure based on these comparisons was applied to discard spurious or doubtful results and produce recommended parameters. Specific strategies were implemented to resolve problems of fast rotation, accretion signatures, chromospheric activity, and veiling. Results. The analysis carried out on spectra acquired in young cluster fields during the first 18 months of observations, up to June 2013, is presented in preparation of the first release of advanced data products. These include targets in the fields of the rho Oph, Cha I, NGC2264, gamma Vel, and NGC 2547 clusters. Stellar parameters obtained with the higher resolution and larger wavelength coverage from UVES are reproduced with comparable accuracy and precision using the smaller wavelength range and lower resolution of the GIRAFFE setup adopted for young stars, which allows us to provide stellar parameters with confidence for the much larger GIRAFFE sample. Precisions are estimated to be approximate to 120 K rms in T-eff, approximate to 0.3 dex rms in log g, and approximate to 0.15 dex rms in [Fe/H] for the UVES and GIRAFFE setups.
  •  
10.
  • Casey, A. R., et al. (författare)
  • The Gaia-ESO Survey : Revisiting the Li-rich giant problem
  • 2016
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 461:3, s. 3336-3352
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of lithium-rich giants contradicts expectations from canonical stellar evolution. Here we report on the serendipitous discovery of 20 Li-rich giants observed during the Gaia-ESO Survey, which includes the first nine Li-rich giant stars known towards the CoRoT fields. Most of our Li-rich giants have near-solar metallicities and stellar parameters consistent with being before the luminosity bump. This is difficult to reconcile with deep mixing models proposed to explain lithium enrichment, because these models can only operate at later evolutionary stages: at or past the luminosity bump. In an effort to shed light on the Li-rich phenomenon, we highlight recent evidence of the tidal destruction of close-in hot Jupiters at the sub-giant phase.We note that when coupled with models of planet accretion, the observed destruction of hot Jupiters actually predicts the existence of Li-rich giant stars, and suggests that Li-rich stars should be found early on the giant branch and occur more frequently with increasing metallicity. A comprehensive review of all known Li-rich giant stars reveals that this scenario is consistent with the data. However, more evolved or metal-poor stars are less likely to host close-in giant planets, implying that their Li-rich origin requires an alternative explanation, likely related to mixing scenarios rather than external phenomena.
  •  
11.
  • Magrini, L., et al. (författare)
  • The Gaia-ESO Survey : the origin and evolution of s-process elements
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 617
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Several works have found an increase of the abundances of the s-process neutron-capture elements in the youngest Galactic stellar populations. These trends provide important constraints on stellar and Galactic evolution and they need to be confirmed with large and statistically significant samples of stars spanning wide age and distance intervals. Aims. We aim to trace the abundance patterns and the time evolution of five s-process elements - two belonging to the first peak, Y and Zr, and three belonging to the second peak, Ba, La, and Ce - using the Gaia-ESO DRS results for open clusters and disc stars. Methods. From the UVES spectra of cluster member stars, we determined the average composition of clusters with ages >0.1 Gyr. We derived statistical ages and distances of field stars, and we separated them into thin and thick disc populations. We studied the time-evolution and dependence on metallicity of abundance ratios using open clusters and field stars whose parameters and abundances were derived in a homogeneous way. Results. Using our large and homogeneous sample of open clusters, thin and thick disc stars, spanning an age range larger than 10 Gyr, we confirm an increase towards young ages of s-process abundances in the solar neighbourhood. These trends are well defined for open clusters and stars located nearby the solar position and they may be explained by a late enrichment due to significant contribution to the production of these elements from long-living low-mass stars. At the same time, we find a strong dependence of the s-process abundance ratios on the Galactocentric distance and on the metallicity of the clusters and field stars. Conclusions. Our results, derived from the largest and most homogeneous sample of s-process abundances in the literature, confirm the growth with decreasing stellar ages of the s-process abundances in both field and open cluster stars. At the same time, taking advantage of the abundances of open clusters located in a wide Galactocentric range, these results offer a new perspective on the dependence of the s-process evolution on the metallicity and star formation history, pointing to different behaviours at various Galactocentric distances.
  •  
12.
  • Spina, L., et al. (författare)
  • The Gaia-ESO Survey: Metallicity of the Chamaeleon I star-forming region
  • 2014
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 568
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Recent metallicity determinations in young open clusters and star-forming regions suggest that the latter may be characterized by a slightly lower metallicity than the Sun and older clusters in the solar vicinity. However, these results are based on small statistics and inhomogeneous analyses. The Gaia-ESO Survey is observing and homogeneously analyzing large samples of stars in several young clusters and star-forming regions, hence allowing us to further investigate this issue. Aims. We present a new metallicity determination of the Chamaeleon I star forming region. based on the products distributed in the first internal release of the Gaia-ESO Survey. Methods. The 48 candidate members of Chamaeleon I have been observed with the high-resolution, spectrograph UVES. We use the surface gravity, lithium line equivalent width, and position in the Hertzsprimg-Russell diagram to confirm the cluster members, and we use the iron abundance to derive the mean metallicity of the region. Results. Out of the 48 targets. we confirm 15 high probability members. Considering the metallicity measurements for nine of them. we find that the iron abundance of Chamaeleon I is slightly subsolar with a mean value [Fe/H] = -0.08 +/- 0.04 dex, This result agrees with the metallicity determination of other nearby star-forming regions and suggests that the chemical pattern of the youngest stars in the solar neighborhood is indeed more metal-poor than the Sun. We argue that this evidence may be related to the chemical distribution of the Gould Belt that contains most of the nearby star-forming regions and young clusters.
  •  
13.
  • Spina, L., et al. (författare)
  • The Gaia-ESO Survey: the first abundance determination of the pre-main-sequence cluster gamma Velorum
  • 2014
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 567
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Knowledge of the abundance distribution of star forming regions and young clusters is critical to investigate a variety of issues, from triggered star formation and chemical enrichment by nearby supernova explosions to the ability to form planetary systems. In spite of this, detailed abundance studies are currently available for relatively few regions. Aims. In this context, we present the analysis of the metallicity of the gamma Velorum cluster, based on the products distributed in the first internal release of the Gaia-ESO Survey. Methods. The gamma Velorum candidate members have been observed with FLAMES, using both UVES and Giraffe, depending on the target brightness and spectral type. In order to derive a solid metallicity determination for the cluster, membership of the observed stars must be first assessed. To this aim, we use several membership criteria including radial velocities, surface gravity estimates, and the detection of the photospheric lithium line. Results. Out of the 80 targets observed with UVES, we identify 14 high-probability members. We find that the metallicity of the cluster is slightly subsolar, with a mean [Fe/H] = -0.057 +/- 0.018 dex. Although J08095427-4721419 is one of the high-probability members, its metallicity is significantly larger than the cluster average. We speculate about its origin as the result of recent accretion episodes of rocky bodies of similar to 60 M-circle plus hydrogen-depleted material from the circumstellar disk.
  •  
14.
  • Viscasillas Vázquez, C., et al. (författare)
  • The Gaia -ESO survey : Age-chemical-clock relations spatially resolved in the Galactic disc
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 660
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The last decade has seen a revolution in our knowledge of the Galaxy thanks to the Gaia and asteroseismic space missions and the ground-based spectroscopic surveys. Aims. To complete this picture, it is necessary to map the ages of its stellar populations. During recent years, the dependence on time of abundance ratios involving slow (s) neutron-capture and α elements (called chemical-clocks) has been used to provide estimates of stellar ages, usually in a limited volume close to the Sun. We aim to analyse the relations of chemical clocks in the Galactic disc extending the range to RGC∼ 6- 20 kpc. Methods. Using the sixth internal data release of the Gaia-ESO survey, we calibrated several relations between stellar ages and abundance ratios [s/α] using a sample of open clusters, the largest one so far used with this aim (62 clusters). Thanks to their wide galactocentric coverage, we investigated the radial variations of the shape of these relations, confirming their non-universality. Results. The multi-variate relations allowed us to infer stellar ages for field stars. We estimated our accuracy (ranging from 0.0 to -0.9 Gyr) and precision (from 0.4 to 2.3 Gyr) in recovering the global ages of open clusters, and the ages of their individual members. We applied the relations with the highest correlation coefficients to the field star population, finding an older population at lower metallicity and higher [α/Fe] in the thin disc, and a younger one at higher [Fe/H] and low [α/Fe], as expected. Conclusion. We confirm that there is no single age-chemical clock relationship valid for the whole disc, but that there is a dependence on the galactocentric position, which is related to the radial variation of the star formation history combined with the non-monotonic dependence on metallicity of the yields of the s-process elements from low- and intermediate-mass stars. Finally, the abundance ratios [Ba/α] are more sensitive to age than those with [Y/α] for young disc stars, and their slopes vary less with galactocentric distance. We remind the reader that the application of such relationships to field stars is only of statistical value.
  •  
15.
  • Baratella, M., et al. (författare)
  • The Gaia-ESO Survey : a new approach to chemically characterising young open clusters I. Stellar parameters, and iron-peak, alpha-, and proton-capture elements
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 634
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Open clusters are recognised as excellent tracers of Galactic thin-disc properties. At variance with intermediate-age and old open clusters, for which a significant number of studies is now available, clusters younger than less than or similar to 150 Myr have been mostly overlooked in terms of their chemical composition until recently (with few exceptions). On the other hand, previous investigations seem to indicate an anomalous behaviour of young clusters, which includes (but is not limited to) slightly sub-solar iron (Fe) abundances and extreme, unexpectedly high barium (Ba) enhancements.Aims: In a series of papers, we plan to expand our understanding of this topic and investigate whether these chemical peculiarities are instead related to abundance analysis techniques.Methods: We present a new determination of the atmospheric parameters for 23 dwarf stars observed by the Gaia-ESO survey in five young open clusters (tau < 150 Myr) and one star-forming region (NGC 2264). We exploit a new method based on titanium (Ti) lines to derive the spectroscopic surface gravity, and most importantly, the microturbulence parameter. A combination of Ti and Fe lines is used to obtain effective temperatures. We also infer the abundances of Fe I, Fe II, Tit, Tin,Na I, Mg I, Al I,Sit, Ca I, Cr I, and Ni I.Results: Our findings are in fair agreement with Gaia-ESO iDR5 results for effective temperatures and surface gravities, but suggest that for very young stars, the microturbulence parameter is over-estimated when Fe lines are employed. This affects the derived chemical composition and causes the metal content of very young clusters to be under-estimated.Conclusions: Our clusters display a metallicity [Fe/H] between +0.04 +/- 0.01 and +0.12 +/- 0.02; they are not more metal poor than the Sun. Although based on a relatively small sample size, our explorative study suggests that we may not need to call for ad hoc explanations to reconcile the chemical composition of young open clusters with Galactic chemical evolution models.
  •  
16.
  • Bouvier, J., et al. (författare)
  • The Gaia-ESO Survey: A lithium-rotation connection at 5 Myr?
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 590
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The evolution of lithium abundance in cool dwarfs provides a unique probe of nonstandard processes in stellar evolution. Aims. We investigate the lithium content of young low-mass stars in the 5 Myr old, star forming region NGC 2264 and its relationship with rotation. Methods. We combine lithium equivalent width measurements (EW(Li)) from the Gaia-ESO Survey with the determination of rotational periods from the CSI 2264 survey. We only consider bona fide nonaccreting cluster members to minimize the uncertainties on EW(Li). Results. We report the existence of a relationship between lithium content and rotation in NGC 2264 at an age of 5 Myr. The Li-rotation connection is seen over a restricted temperature range (Teff = 3800-4400 K), where fast rotators are Li-rich compared to slow rotators. This correlation is similar to, albeit of lower amplitude than, the Li-rotation connection previously reported for K dwarfs in the 125 Myr old Pleiades cluster. We investigate whether the nonstandard pre-main-sequence models developed so far to explain the Pleiades results, which are based on episodic accretion, pre-main-sequence, core-envelope decoupling, and/or radius inflation due to enhanced magnetic activity, can account for early development of the Li-rotation connection. While radius inflation appears to be the most promising possibility, each of these models has issues. We therefore also discuss external causes that might operate during the first few Myr of pre-main-sequence evolution, such as planet engulfment and/or steady disk accretion, as possible candidates for the common origin for Li excess and fast rotation in young low-mass pre-main-sequence stars. Conclusions. The emergence of a connection between lithium content and rotation rate at such an early age as 5 Myr suggests a complex link between accretion processes, early angular momentum evolution, and possibly planet formation, which likely impacts early stellar evolution and has yet to be fully deciphered.
  •  
17.
  • Fu, X., et al. (författare)
  • The Gaia-ESO Survey : Lithium enrichment histories of the Galactic thick and thin disc
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 610
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium abundance in most of the warm metal-poor main sequence stars shows a constarnt plateau (A(Li) similar to 2.2 dex) and then the upper envelope of the lithium vs. metallicity distribution increases as we approach solar metallicity. Meteorites, which carry information about the chemical composition of the interstellar medium (ISM) at the solar system formation time, show a lithium abundance A(Li) similar to 3.26 dex. This pattern reflects the Li enrichment history of the ISM during the Galaxy lifetime. After the initial Li production in big bang nucleosynthesis, the sources of the enrichment include asymptotic giant branch (AGB) stars, low-mass red giants, novae, type II supernovae, and Galactic cosmic rays. The total amount of enriched Li is sensitive to the relative contribution of these sources. Thus different Li enrichment histories are expected in the Galactic thick and thin disc. We investigate the main sequence stars observed with UVES in Gaia-ESO Survey iDR4 catalogue and find a Li[alpha/Fe] anticorrelation independent of [Fe/H], T-eff, and log(g). Since in stellar evolution different alpha enhancements at the same metallicity do not lead to a measurable Li abundance change, the anticorrelation indicates that more Li is produced during the Galactic thin disc phase than during the Galactic thick disc phase. We also find a correlation between the abundance of Li and s-process elements Ba and Y, and they both decrease above the solar metallicity, which can be explained in the framework of the adopted Galactic chemical evolution models.
  •  
18.
  • Gutierrez Albarran, M. L., et al. (författare)
  • The Gaia-ESO Survey : Calibrating the lithium-age relation with open clusters and associations I. Cluster age range and initial membership selections
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 643
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Previous studies of open clusters have shown that lithium depletion is not only strongly age dependent but also shows a complex pattern with other parameters that is not yet understood. For pre- and main-sequence late-type stars, these parameters include metallicity, mixing mechanisms, convection structure, rotation, and magnetic activity.Aims: We perform a thorough membership analysis for a large number of stars observed within the Gaia-ESO survey (GES) in the field of 20 open clusters, ranging in age from young clusters and associations, to intermediate-age and old open clusters.Methods: Based on the parameters derived from the GES spectroscopic observations, we obtained lists of candidate members for each of the clusters in the sample by deriving radial velocity distributions and studying the position of the kinematic selections in the EW(Li)-versus-T-eff plane to obtain lithium members. We used gravity indicators to discard field contaminants and studied [Fe/H] metallicity to further confirm the membership of the candidates. We also made use of studies using recent data from the Gaia DR1 and DR2 releases to assess our member selections.Results: We identified likely member candidates for the sample of 20 clusters observed in GES (iDR4) with UVES and GIRAFFE, and conducted a comparative study that allowed us to characterize the properties of these members as well as identify field contaminant stars, both lithium-rich giants and non-giant outliers.Conclusions: This work is the first step towards the calibration of the lithium-age relation and its dependence on other GES parameters. During this project we aim to use this relation to infer the ages of GES field stars, and identify their potential membership to young associations and stellar kinematic groups of different ages.
  •  
19.
  • Magrini, L., et al. (författare)
  • The Gaia -ESO survey: Mixing processes in low-mass stars traced by lithium abundance in cluster and field stars
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 651
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We aim to constrain the mixing processes in low-mass stars by investigating the behaviour of the Li surface abundance after the main sequence. We take advantage of the data from the sixth internal data release of Gaia-ESO, IDR6, and from the Gaia Early Data Release 3, EDR3s. Methods. We selected a sample of main-sequence, sub-giant, and giant stars in which the Li abundance is measured by the Gaia-ESO survey. These stars belong to 57 open clusters with ages from 130 Myr to about 7 Gyr and to Milky Way fields, covering a range in [Fe/H] between -1.0and +0.5 dex, with few stars between -1.0 and -2.5dex. We studied the behaviour of the Li abundances as a function of stellar parameters. We inferred the masses of giant stars in clusters from the main-sequence turn-off masses, and for field stars through comparison with stellar evolution models using a maximum likelihood technique. We compared the observed Li behaviour in field giant stars and in giant stars belonging to individual clusters with the predictions of a set of classical models and of models with mixing induced by rotation and thermohaline instability. Results. The comparison with stellar evolution models confirms that classical models cannot reproduce the observed lithium abundances in the metallicity and mass regimes covered by the data. The models that include the effects of both rotation-induced mixing and thermohaline instability account for the Li abundance trends observed in our sample in all metallicity and mass ranges. The differences between the results of the classical models and of the rotation models largely differ (up to 2 dex), making lithium the best element with which to constrain stellar mixing processes in low-mass stars. We discuss the nature of a sample of Li-rich stars. Conclusions. We demonstrate that the evolution of the surface abundance of Li in giant stars is a powerful tool for constraining theoretical stellar evolution models, allowing us to distinguish the effect of different mixing processes. For stars with well-determined masses, we find a better agreement of observed surface abundances and models with rotation-induced and thermohaline mixing. Rotation effects dominate during the main sequence and the first phases of the post-main-sequence evolution, and the thermohaline induced mixing after the bump in the luminosity function.
  •  
20.
  • Psaridi, A., et al. (författare)
  • Discovery of two warm mini-Neptunes with contrasting densities orbiting the young K3V star TOI-815
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 685
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the discovery and characterization of two warm mini-Neptunes transiting the K3V star TOI-815 in a K–M binary system. Analysis of its spectra and rotation period reveal the star to be young, with an age of 200+−400200 Myr. TOI-815b has a 11.2-day period and a radius of 2.94 ± 0.05 R+ with transits observed by TESS, CHEOPS, ASTEP, and LCOGT. The outer planet, TOI-815c, has a radius of 2.62 ± 0.10 R+, based on observations of three nonconsecutive transits with TESS; targeted CHEOPS photometry and radial velocity follow-up with ESPRESSO were required to confirm the 35-day period. ESPRESSO confirmed the planetary nature of both planets and measured masses of 7.6 ± 1.5 M+ (ρP = 1.64+−003331 g cm−3) and 23.5 ± 2.4 M+ (ρP = 7.2+−1110 g cm−3), respectively. Thus, the planets have very different masses, which is unusual for compact multi-planet systems. Moreover, our statistical analysis of mini-Neptunes orbiting FGK stars suggests that weakly irradiated planets tend to have higher bulk densities compared to those undergoing strong irradiation. This could be ascribed to their cooler atmospheres, which are more compressed and denser. Internal structure modeling of TOI-815b suggests it likely has a H-He atmosphere that constitutes a few percent of the total planet mass, or higher if the planet is assumed to have no water. In contrast, the measured mass and radius of TOI-815c can be explained without invoking any atmosphere, challenging planetary formation theories. Finally, we infer from our measurements that the star is viewed close to pole-on, which implies a spin-orbit misalignment at the 3σ level. This emphasizes the peculiarity of the system’s orbital architecture, and probably hints at an eventful dynamical history.
  •  
21.
  • Smiljanic, R., et al. (författare)
  • The Gaia-ESO Survey : Inhibited extra mixing in two giants of the open cluster Trumpler 20?
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 591
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of two Li-rich giants, with A(Li) ~ 1.50, in an analysis of a sample of 40 giants of the open cluster Trumpler 20 (with turnoff mass ~1.8 M⊙). The cluster was observed in the context of the Gaia-ESO Survey. Methods. The atmospheric parameters and Li abundances were derived using high-resolution UVES spectra. The Li abundances were corrected for nonlocal thermodynamical equilibrium (non-LTE) effects. Results. Only upper limits of the Li abundance could be determined for the majority of the sample. Two giants with detected Li turned out to be Li rich: star MG 340 has A(Li)non-LTE = 1.54 ± 0.21 dex and star MG 591 has A(Li)non-LTE = 1.60 ± 0.21 dex. Star MG 340 is on average ~0.30 dex more rich in Li than stars of similar temperature, while for star MG 591 this difference is on average ~0.80 dex. Carbon and nitrogen abundances indicate that all stars in the sample have completed the first dredge-up. Conclusions. The Li abundances in this unique sample of 40 giants in one open cluster clearly show that extra mixing is the norm in this mass range. Giants with Li abundances in agreement with the predictions of standard models are the exception. To explain the two Li-rich giants, we suggest that all events of extra mixing have been inhibited. This includes rotation-induced mixing during the main sequence and the extra mixing at the red giant branch luminosity bump. Such inhibition has been suggested in the literature to occur because of fossil magnetic fields in red giants that are descendants of main-sequence Ap-type stars.
  •  
22.
  • Marconi, A., et al. (författare)
  • EELT-HIRES the high-resolution spectrograph for the E-ELT
  • 2016
  • Ingår i: GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY VI. - : SPIE. - 9781510601963
  • Konferensbidrag (refereegranskat)abstract
    • The first generation of E-ELT instruments will include an optical infrared High Resolution Spectrograph, conventionally indicated as EELT-HIRES, which will be capable of providing unique breakthroughs in the fields of exoplanets, star and planet formation, physics and evolution of stars and galaxies, cosmology and fundamental physics. A 2-year long phase A study for EELT-HIRES has just started and will be performed by a consortium composed of institutes and organisations from Brazil, Chile, Denmark, France, Germany, Italy, Poland, Portugal, Spain, Sweden, Switzerland and United Kingdom. In this paper we describe the science goals and the preliminary technical concept for EELT-HIRES which will be developed during the phase A, as well as its planned development and consortium organisation during the study.
  •  
23.
  • Adibekyan, V., et al. (författare)
  • Sun-like stars unlike the Sun : Clues for chemical anomalies of cool stars
  • 2017
  • Ingår i: Astronomical Notes - Astronomische Nachrichten. - : WILEY-V C H VERLAG GMBH. - 0004-6337 .- 1521-3994. ; 338:4, s. 442-452
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a summary of the splinter session Sun-like stars unlike the Sun that was held on June 9, 2016, as part of the Cool Stars 19 conference (Uppsala, Sweden), in which the main limitations (in the theory and observations) in the derivation of very precise stellar parameters and chemical abundances of Sun-like stars were discussed. The most important and most debated processes that can produce chemical peculiarities in solar-type stars were outlined and discussed. Finally, in an open discussion between all the participants, we tried to identify new pathways and prospects toward future solutions of the currently open questions.
  •  
24.
  • Hawthorn, F., et al. (författare)
  • TOI-836: A super-Earth and mini-Neptune transiting a nearby K-dwarf
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 520:3, s. 3649-3668
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the discovery of two exoplanets transiting TOI-836 (TIC 440887364) using data from TESS Sector 11 and Sector 38. TOI-836 is a bright (T = 8.5 mag), high proper motion (∼200 mas yr−1), low metallicity ([Fe/H]≈−0.28) K-dwarf with a mass of 0.68 ± 0.05 M and a radius of 0.67 ± 0.01 R. We obtain photometric follow-up observations with a variety of facilities, and we use these data sets to determine that the inner planet, TOI-836 b, is a 1.70 ± 0.07 R super-Earth in a 3.82-d orbit, placing it directly within the so-called ‘radius valley’. The outer planet, TOI-836 c, is a 2.59 ± 0.09 R mini-Neptune in an 8.60-d orbit. Radial velocity measurements reveal that TOI-836 b has a mass of 4.5 ± 0.9 M, while TOI-836 c has a mass of 9.6 ± 2.6 M. Photometric observations show Transit Timing Variations (TTVs) on the order of 20 min for TOI-836 c, although there are no detectable TTVs for TOI-836 b. The TTVs of planet TOI-836 c may be caused by an undetected exterior planet.
  •  
25.
  • Jofré, P., et al. (författare)
  • Gaia FGK benchmark stars : abundances of α and iron-peak elements
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 582
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. In the current era of large spectroscopic surveys of the Milky Way, reference stars for calibrating astrophysical parameters and chemical abundances are of paramount importance. Aims. We determine elemental abundances of Mg, Si, Ca, Sc, Ti, V, Cr, Mn, Co, and Ni for our predefined set of Gaia FGK benchmark stars. Methods. By analysing high-resolution spectra with a high signal-to-noise ratio taken from several archive datasets, we combined results of eight different methods to determine abundances on a line-by-line basis. We performed a detailed homogeneous analysis of the systematic uncertainties, such as differential versus absolute abundance analysis. We also assessed errors that are due to non-local thermal equilibrium and the stellar parameters in our final abundances. Results. Our results are provided by listing final abundances and the different sources of uncertainties, as well as line-by-line and method-by-method abundances. Conclusions. The atmospheric parameters of the Gaia FGK benchmark stars are already being widely used for calibration of several pipelines that are applied to different surveys. With the added reference abundances of ten elements, this set is very suitable for calibrating the chemical abundances obtained by these pipelines.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 29

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy