SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Micali N) "

Sökning: WFRF:(Micali N)

  • Resultat 1-25 av 47
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Munn-Chernoff, M. A., et al. (författare)
  • Shared genetic risk between eating disorder- and substance-use-related phenotypes: Evidence from genome-wide association studies
  • 2021
  • Ingår i: Addiction Biology. - : Wiley. - 1355-6215 .- 1369-1600. ; 26:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Eating disorders and substance use disorders frequently co-occur. Twin studies reveal shared genetic variance between liabilities to eating disorders and substance use, with the strongest associations between symptoms of bulimia nervosa and problem alcohol use (genetic correlation [r(g)], twin-based = 0.23-0.53). We estimated the genetic correlation between eating disorder and substance use and disorder phenotypes using data from genome-wide association studies (GWAS). Four eating disorder phenotypes (anorexia nervosa [AN], AN with binge eating, AN without binge eating, and a bulimia nervosa factor score), and eight substance-use-related phenotypes (drinks per week, alcohol use disorder [AUD], smoking initiation, current smoking, cigarettes per day, nicotine dependence, cannabis initiation, and cannabis use disorder) from eight studies were included. Significant genetic correlations were adjusted for variants associated with major depressive disorder and schizophrenia. Total study sample sizes per phenotype ranged from similar to 2400 to similar to 537 000 individuals. We used linkage disequilibrium score regression to calculate single nucleotide polymorphism-based genetic correlations between eating disorder- and substance-use-related phenotypes. Significant positive genetic associations emerged between AUD and AN (r(g) = 0.18; false discovery rate q = 0.0006), cannabis initiation and AN (r(g) = 0.23; q < 0.0001), and cannabis initiation and AN with binge eating (r(g) = 0.27; q = 0.0016). Conversely, significant negative genetic correlations were observed between three nondiagnostic smoking phenotypes (smoking initiation, current smoking, and cigarettes per day) and AN without binge eating (r(gs) = -0.19 to -0.23; qs < 0.04). The genetic correlation between AUD and AN was no longer significant after co-varying for major depressive disorder loci. The patterns of association between eating disorder- and substance-use-related phenotypes highlights the potentially complex and substance-specific relationships among these behaviors.
  •  
2.
  •  
3.
  • Bryois, J., et al. (författare)
  • Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson’s disease
  • 2020
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 52:5, s. 482-493
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies have discovered hundreds of loci associated with complex brain disorders, but it remains unclear in which cell types these loci are active. Here we integrate genome-wide association study results with single-cell transcriptomic data from the entire mouse nervous system to systematically identify cell types underlying brain complex traits. We show that psychiatric disorders are predominantly associated with projecting excitatory and inhibitory neurons. Neurological diseases were associated with different cell types, which is consistent with other lines of evidence. Notably, Parkinson’s disease was genetically associated not only with cholinergic and monoaminergic neurons (which include dopaminergic neurons) but also with enteric neurons and oligodendrocytes. Using post-mortem brain transcriptomic data, we confirmed alterations in these cells, even at the earliest stages of disease progression. Our study provides an important framework for understanding the cellular basis of complex brain maladies, and reveals an unexpected role of oligodendrocytes in Parkinson’s disease. © 2020, The Author(s), under exclusive licence to Springer Nature America, Inc.
  •  
4.
  •  
5.
  • Watson, H. J., et al. (författare)
  • Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa
  • 2019
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 51:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Characterized primarily by a low body-mass index, anorexia nervosa is a complex and serious illness(1), affecting 0.9-4% of women and 0.3% of men(2-4), with twin-based heritability estimates of 50-60%(5). Mortality rates are higher than those in other psychiatric disorders(6), and outcomes are unacceptably poor(7). Here we combine data from the Anorexia Nervosa Genetics Initiative (ANGI)(8,9) and the Eating Disorders Working Group of the Psychiatric Genomics Consortium (PGC-ED) and conduct a genome-wide association study of 16,992 cases of anorexia nervosa and 55,525 controls, identifying eight significant loci. The genetic architecture of anorexia nervosa mirrors its clinical presentation, showing significant genetic correlations with psychiatric disorders, physical activity, and metabolic (including glycemic), lipid and anthropometric traits, independent of the effects of common variants associated with body-mass index. These results further encourage a reconceptualization of anorexia nervosa as a metabo-psychiatric disorder. Elucidating the metabolic component is a critical direction for future research, and paying attention to both psychiatric and metabolic components may be key to improving outcomes.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Abdulkadir, M, et al. (författare)
  • Polygenic Score for Body Mass Index Is Associated with Disordered Eating in a General Population Cohort
  • 2020
  • Ingår i: Journal of clinical medicine. - : MDPI AG. - 2077-0383. ; 9:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Disordered eating (DE) is common and is associated with body mass index (BMI). We investigated whether genetic variants for BMI were associated with DE. Methods: BMI polygenic scores (PGS) were calculated for participants of the Avon Longitudinal Study of Parents and Children (ALSPAC; N = 8654) and their association with DE tested. Data on DE behaviors (e.g., binge eating and compensatory behaviors) were collected at ages 14, 16, 18 years, and DE cognitions (e.g., body dissatisfaction) at 14 years. Mediation analyses determined whether BMI mediated the association between the BMI-PGS and DE. Results: The BMI-PGS was positively associated with fasting (OR = 1.42, 95% CI = 1.25, 1.61), binge eating (OR = 1.28, 95% CI = 1.12, 1.46), purging (OR = 1.20, 95% CI = 1.02, 1.42), body dissatisfaction (Beta = 0.99, 95% CI = 0.77, 1.22), restrained eating (Beta = 0.14, 95% CI = 0.10, 1.17), emotional eating (Beta = 0.21, 95% CI = 0.052, 0.38), and negatively associated with thin ideal internalization (Beta = −0.15, 95% CI = −0.23, −0.07) and external eating (Beta = −0.19, 95% CI = −0.30, −0.09). These associations were mainly mediated by BMI. Conclusions: Genetic variants associated with BMI are also associated with DE. This association was mediated through BMI suggesting that weight potentially sits on the pathway from genetic liability to DE.
  •  
11.
  •  
12.
  •  
13.
  • Anderson, Cynthia M., et al. (författare)
  • Permanent Genetic Resources added to Molecular Ecology Resources Database 1 December 2009-31 January 2010
  • 2010
  • Ingår i: Molecular Ecology Resources. - : Wiley. - 1755-098X .- 1755-0998. ; 10:3, s. 576-579
  • Tidskriftsartikel (refereegranskat)abstract
    • This article documents the addition of 220 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Allanblackia floribunda, Amblyraja radiata, Bactrocera cucurbitae, Brachycaudus helichrysi, Calopogonium mucunoides, Dissodactylus primitivus, Elodea canadensis, Ephydatia fluviatilis, Galapaganus howdenae howdenae, Hoplostethus atlanticus, Ischnura elegans, Larimichthys polyactis, Opheodrys vernalis, Pelteobagrus fulvidraco, Phragmidium violaceum, Pistacia vera, and Thunnus thynnus. These loci were cross-tested on the following species: Allanblackia gabonensis, Allanblackia stanerana, Neoceratitis cyanescens, Dacus ciliatus, Dacus demmerezi, Bactrocera zonata, Ceratitis capitata, Ceratitis rosa, Ceratits catoirii, Dacus punctatifrons, Ephydatia mulleri, Spongilla lacustris, Geodia cydonium, Axinella sp., Ischnura graellsii, Ischnura ramburii, Ischnura pumilio, Pistacia integerrima and Pistacia terebinthus.
  •  
14.
  • Bould, H., et al. (författare)
  • Do eating disorders in parents predict eating disorders in children? Evidence from a Swedish cohort
  • 2015
  • Ingår i: Acta Psychiatrica Scandinavica. - : Wiley. - 0001-690X .- 1600-0447. ; 132:1, s. 51-59
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: We investigated whether parental eating disorders (ED) predict ED in children, using a large multigeneration register-based sample.Method: We used a subset of the Stockholm Youth Cohort born 1984-1995 and resident in Stockholm County in 2001-2007 (N=286232), The exposure was a diagnosed eating disorder in a parent; the outcome was any eating disorder diagnosis in their offspring, given by a specialist clinician, or inferred from an appointment at a specialist eating disorder clinic. A final study sample of 158697 (55.4%) had data on these variables and confounding factors and contributed a total of 886241personyears to the analysis.Results: We found good evidence in support of the hypothesis that ED in either parent are independently associated with ED in their female children (HR 1.97 (95% CI: 1.17-3.33), P=0.01) and that ED in mothers are independently associated with ED in their female children (HR 2.35 (95% CI: 1.39-3.97) P=0.001). Numbers were too low to permit separate analysis of ED in parents and their male children.Conclusion: Eating disorders in parents were associated with ED in children. This study adds to our knowledge about the intergenerational transmission of ED, which will help identify high-risk groups and brings about the possibility of targeted prevention.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  • Ferreira, DLS, et al. (författare)
  • Associations between Blood Metabolic Profile at 7 Years Old and Eating Disorders in Adolescence: Findings from the Avon Longitudinal Study of Parents and Children
  • 2019
  • Ingår i: Metabolites. - : MDPI AG. - 2218-1989. ; 9:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Eating disorders are severe illnesses characterized by both psychiatric and metabolic factors. We explored the prospective role of metabolic risk in eating disorders in a UK cohort (n = 2929 participants), measuring 158 metabolic traits in non-fasting EDTA-plasma by nuclear magnetic resonance. We associated metabolic markers at 7 years (exposure) with risk for anorexia nervosa and binge-eating disorder (outcomes) at 14, 16, and 18 years using logistic regression adjusted for maternal education, child’s sex, age, body mass index, and calorie intake at 7 years. Elevated very low-density lipoproteins, triglycerides, apolipoprotein-B/A, and monounsaturated fatty acids ratio were associated with lower odds of anorexia nervosa at age 18, while elevated high-density lipoproteins, docosahexaenoic acid and polyunsaturated fatty acids ratio, and fatty acid unsaturation were associated with higher risk for anorexia nervosa at 18 years. Elevated linoleic acid and n-6 fatty acid ratios were associated with lower odds of binge-eating disorder at 16 years, while elevated saturated fatty acid ratio was associated with higher odds of binge-eating disorder. Most associations had large confidence intervals and showed, for anorexia nervosa, different directions across time points. Overall, our results show some evidence for a role of metabolic factors in eating disorders development in adolescence.
  •  
21.
  • Herle, M, et al. (författare)
  • A longitudinal study of eating behaviours in childhood and later eating disorder behaviours and diagnoses
  • 2020
  • Ingår i: The British journal of psychiatry : the journal of mental science. - : Royal College of Psychiatrists. - 1472-1465. ; 216:2, s. 113-119
  • Tidskriftsartikel (refereegranskat)abstract
    • Eating behaviours in childhood are considered as risk factors for eating disorder behaviours and diagnoses in adolescence. However, few longitudinal studies have examined this association.AimsWe investigated associations between childhood eating behaviours during the first ten years of life and eating disorder behaviours (binge eating, purging, fasting and excessive exercise) and diagnoses (anorexia nervosa, binge eating disorder, purging disorder and bulimia nervosa) at 16 years.MethodData on 4760 participants from the Avon Longitudinal Study of Parents and Children were included. Longitudinal trajectories of parent-rated childhood eating behaviours (8 time points, 1.3–9 years) were derived by latent class growth analyses. Eating disorder diagnoses were derived from self-reported, parent-reported and objectively measured anthropometric data at age 16 years. We estimated associations between childhood eating behaviours and eating disorder behaviours and diagnoses, using multivariable logistic regression models.ResultsChildhood overeating was associated with increased risk of adolescent binge eating (risk difference, 7%; 95% CI 2 to 12) and binge eating disorder (risk difference, 1%; 95% CI 0.2 to 3). Persistent undereating was associated with higher anorexia nervosa risk in adolescent girls only (risk difference, 6%; 95% CI, 0 to 12). Persistent fussy eating was associated with greater anorexia nervosa risk (risk difference, 2%; 95% CI 0 to 4).ConclusionsOur results suggest continuities of eating behaviours into eating disorders from early life to adolescence. It remains to be determined whether childhood eating behaviours are an early manifestation of a specific phenotype or whether the mechanisms underlying this continuity are more complex. Findings have the potential to inform preventative strategies for eating disorders.
  •  
22.
  •  
23.
  •  
24.
  • Herle, M, et al. (författare)
  • Identifying typical trajectories in longitudinal data: modelling strategies and interpretations
  • 2020
  • Ingår i: European journal of epidemiology. - : Springer Science and Business Media LLC. - 1573-7284 .- 0393-2990. ; 35:3, s. 205-222
  • Tidskriftsartikel (refereegranskat)abstract
    • Individual-level longitudinal data on biological, behavioural, and social dimensions are becoming increasingly available. Typically, these data are analysed using mixed effects models, with the result summarised in terms of an average trajectory plus measures of the individual variations around this average. However, public health investigations would benefit from finer modelling of these individual variations which identify not just one average trajectory, but several typical trajectories. If evidence of heterogeneity in the development of these variables is found, the role played by temporally preceding (explanatory) variables as well as the potential impact of differential trajectories may have on later outcomes is often of interest. A wide choice of methods for uncovering typical trajectories and relating them to precursors and later outcomes exists. However, despite their increasing use, no practical overview of these methods targeted at epidemiological applications exists. Hence we provide: (a) a review of the three most commonly used methods for the identification of latent trajectories (growth mixture models, latent class growth analysis, and longitudinal latent class analysis); and (b) recommendations for the identification and interpretation of these trajectories and of their relationship with other variables. For illustration, we use longitudinal data on childhood body mass index and parental reports of fussy eating, collected in the Avon Longitudinal Study of Parents and Children.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 47

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy