SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Michelsen A.) "

Sökning: WFRF:(Michelsen A.)

  • Resultat 1-25 av 117
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dornelas, M., et al. (författare)
  • BioTIME: A database of biodiversity time series for the Anthropocene
  • 2018
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 27:7, s. 760-786
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. Main types of variables included: The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. Spatial location and grain: BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km(2) (158 cm(2)) to 100 km(2) (1,000,000,000,000 cm(2)). Time period and grainBio: TIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. Major taxa and level of measurement: BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates.
  •  
2.
  • Thomas, H. J. D., et al. (författare)
  • Global plant trait relationships extend to the climatic extremes of the tundra biome
  • 2020
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The majority of variation in six traits critical to the growth, survival and reproduction of plant species is thought to be organised along just two dimensions, corresponding to strategies of plant size and resource acquisition. However, it is unknown whether global plant trait relationships extend to climatic extremes, and if these interspecific relationships are confounded by trait variation within species. We test whether trait relationships extend to the cold extremes of life on Earth using the largest database of tundra plant traits yet compiled. We show that tundra plants demonstrate remarkably similar resource economic traits, but not size traits, compared to global distributions, and exhibit the same two dimensions of trait variation. Three quarters of trait variation occurs among species, mirroring global estimates of interspecific trait variation. Plant trait relationships are thus generalizable to the edge of global trait-space, informing prediction of plant community change in a warming world.
  •  
3.
  • Thomas, H. J.D., et al. (författare)
  • Traditional plant functional groups explain variation in economic but not size-related traits across the tundra biome
  • 2019
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 28:2, s. 78-95
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2018 The Authors Global Ecology and Biogeography Published by John Wiley & Sons Ltd Aim: Plant functional groups are widely used in community ecology and earth system modelling to describe trait variation within and across plant communities. However, this approach rests on the assumption that functional groups explain a large proportion of trait variation among species. We test whether four commonly used plant functional groups represent variation in six ecologically important plant traits. Location: Tundra biome. Time period: Data collected between 1964 and 2016. Major taxa studied: 295 tundra vascular plant species. Methods: We compiled a database of six plant traits (plant height, leaf area, specific leaf area, leaf dry matter content, leaf nitrogen, seed mass) for tundra species. We examined the variation in species-level trait expression explained by four traditional functional groups (evergreen shrubs, deciduous shrubs, graminoids, forbs), and whether variation explained was dependent upon the traits included in analysis. We further compared the explanatory power and species composition of functional groups to alternative classifications generated using post hoc clustering of species-level traits. Results: Traditional functional groups explained significant differences in trait expression, particularly amongst traits associated with resource economics, which were consistent across sites and at the biome scale. However, functional groups explained 19% of overall trait variation and poorly represented differences in traits associated with plant size. Post hoc classification of species did not correspond well with traditional functional groups, and explained twice as much variation in species-level trait expression. Main conclusions: Traditional functional groups only coarsely represent variation in well-measured traits within tundra plant communities, and better explain resource economic traits than size-related traits. We recommend caution when using functional group approaches to predict tundra ecosystem change, or ecosystem functions relating to plant size, such as albedo or carbon storage. We argue that alternative classifications or direct use of specific plant traits could provide new insight into ecological prediction and modelling.
  •  
4.
  • Natali, S. M., et al. (författare)
  • Large loss of CO2 in winter observed across the northern permafrost region
  • 2019
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 9:11, s. 852-857
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent warming in the Arctic, which has been amplified during the winter(1-3), greatly enhances microbial decomposition of soil organic matter and subsequent release of carbon dioxide (CO2)(4). However, the amount of CO2 released in winter is not known and has not been well represented by ecosystem models or empirically based estimates(5,6). Here we synthesize regional in situ observations of CO2 flux from Arctic and boreal soils to assess current and future winter carbon losses from the northern permafrost domain. We estimate a contemporary loss of 1,662 TgC per year from the permafrost region during the winter season (October-April). This loss is greater than the average growing season carbon uptake for this region estimated from process models (-1,032 TgC per year). Extending model predictions to warmer conditions up to 2100 indicates that winter CO2 emissions will increase 17% under a moderate mitigation scenario-Representative Concentration Pathway 4.5-and 41% under business-as-usual emissions scenario-Representative Concentration Pathway 8.5. Our results provide a baseline for winter CO2 emissions from northern terrestrial regions and indicate that enhanced soil CO2 loss due to winter warming may offset growing season carbon uptake under future climatic conditions.
  •  
5.
  •  
6.
  • Björkman, Anne, 1981, et al. (författare)
  • Plant functional trait change across a warming tundra biome
  • 2018
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 562:7725, s. 57-62
  • Tidskriftsartikel (refereegranskat)abstract
    • The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations. Spatial temperature–trait relationships were generally strong but soil moisture had a marked influence on the strength and direction of these relationships, highlighting the potentially important influence of changes in water availability on future trait shifts in tundra plant communities. Community height increased with warming across all sites over the past three decades, but other traits lagged far behind predicted rates of change. Our findings highlight the challenge of using space-for-time substitution to predict the functional consequences of future warming and suggest that functions that are tied closely to plant height will experience the most rapid change. They also reveal the strength with which environmental factors shape biotic communities at the coldest extremes of the planet and will help to improve projections of functional changes in tundra ecosystems with climate warming.
  •  
7.
  • Staude, I. R., et al. (författare)
  • Directional turnover towards larger-ranged plants over time and across habitats
  • 2022
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 25:2, s. 466-82
  • Tidskriftsartikel (refereegranskat)abstract
    • Species turnover is ubiquitous. However, it remains unknown whether certain types of species are consistently gained or lost across different habitats. Here, we analysed the trajectories of 1827 plant species over time intervals of up to 78 years at 141 sites across mountain summits, forests, and lowland grasslands in Europe. We found, albeit with relatively small effect sizes, displacements of smaller- by larger-ranged species across habitats. Communities shifted in parallel towards more nutrient-demanding species, with species from nutrient-rich habitats having larger ranges. Because these species are typically strong competitors, declines of smaller-ranged species could reflect not only abiotic drivers of global change, but also biotic pressure from increased competition. The ubiquitous component of turnover based on species range size we found here may partially reconcile findings of no net loss in local diversity with global species loss, and link community-scale turnover to macroecological processes such as biotic homogenisation.
  •  
8.
  • Winkler, M., et al. (författare)
  • The rich sides of mountain summits - a pan-European view on aspect preferences of alpine plants
  • 2016
  • Ingår i: Journal of Biogeography. - : Wiley. - 0305-0270. ; 43:11, s. 2261-2273
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim In the alpine life zone, plant diversity is strongly determined by local topography and microclimate. We assessed the extent to which aspect and its relatedness to temperature affect plant species diversity, and the colonization and disappearance of species on alpine summits on a pan-European scale. Methods Vascular plant species and their percentage cover were recorded in permanent plots in each cardinal direction on 123 summits in 32 regions across Europe. For a subset from 17 regions, resurvey data and 6-year soil temperature series were available. Differences in temperature sum and Shannon index as well as species richness, colonization and disappearance of species among cardinal directions were analysed using linear mixed-effects and generalised mixed-effects models, respectively. Results Temperature sums were higher in east-and south-facing aspects than in the north-facing ones, while the west-facing ones were intermediate; differences were smallest in northern Europe. The patterns of temperature sums among aspects were consistent among years. In temperate regions, thermal differences were reflected by plant diversity, whereas this relationship was weaker or absent on Mediterranean and boreal mountains. Colonization of species was positively related to temperature on Mediterranean and temperate mountains, whereas disappearance of species was not related to temperature. Main conclusions Thermal differences caused by solar radiation determine plant species diversity on temperate mountains. Advantages for plants on eastern slopes may result from the combined effects of a longer diurnal period of radiation due to convection cloud effects in the afternoon and the sheltered position against the prevailing westerly winds. In northern Europe, long summer days and low sun angles can even out differences among aspects. On Mediterranean summits, summer drought may limit species numbers on the warmer slopes. Warmer aspects support a higher number of colonization events. Hence, aspect can be a principal determinant of the pace of climate-induced migration processes.
  •  
9.
  • Cornelissen, Johannes H C, et al. (författare)
  • Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes
  • 2007
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 10:7, s. 619-627
  • Tidskriftsartikel (refereegranskat)abstract
    • Whether climate change will turn cold biomes from large long-term carbon sinks into sources is hotly debated because of the great potential for ecosystem-mediated feedbacks to global climate. Critical are the direction, magnitude and generality of climate responses of plant litter decomposition. Here, we present the first quantitative analysis of the major climate-change-related drivers of litter decomposition rates in cold northern biomes worldwide.Leaf litters collected from the predominant species in 33 global change manipulation experiments in circum-arctic-alpine ecosystems were incubated simultaneously in two contrasting arctic life zones. We demonstrate that longer-term, large-scale changes to leaf litter decomposition will be driven primarily by both direct warming effects and concomitant shifts in plant growth form composition, with a much smaller role for changes in litter quality within species. Specifically, the ongoing warming-induced expansion of shrubs with recalcitrant leaf litter across cold biomes would constitute a negative feedback to global warming. Depending on the strength of other (previously reported) positive feedbacks of shrub expansion on soil carbon turnover, this may partly counteract direct warming enhancement of litter decomposition.
  •  
10.
  • Elmendorf, Sarah C., et al. (författare)
  • Global assessment of experimental climate warming on tundra vegetation : heterogeneity over space and time
  • 2012
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 15:2, s. 164-175
  • Forskningsöversikt (refereegranskat)abstract
    • Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change. We address these issues with a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide. The response of plant groups to warming often differed with ambient summer temperature, soil moisture and experimental duration. Shrubs increased with warming only where ambient temperature was high, whereas graminoids increased primarily in the coldest study sites. Linear increases in effect size over time were frequently observed. There was little indication of saturating or accelerating effects, as would be predicted if negative or positive vegetation feedbacks were common. These results indicate that tundra vegetation exhibits strong regional variation in response to warming, and that in vulnerable regions, cumulative effects of long-term warming on tundra vegetation and associated ecosystem consequences have the potential to be much greater than we have observed to date.
  •  
11.
  • Elmendorf, Sarah C., et al. (författare)
  • Plot-scale evidence of tundra vegetation change and links to recent summer warming
  • 2012
  • Ingår i: Nature Climate Change. - : Nature Publishing Group. - 1758-678X .- 1758-6798. ; 2:6, s. 453-457
  • Tidskriftsartikel (refereegranskat)abstract
    • Temperature is increasing at unprecedented rates across most of the tundra biome. Remote-sensing data indicate that contemporary climate warming has already resulted in increased productivity over much of the Arctic, but plot-based evidence for vegetation transformation is not widespread. We analysed change in tundra vegetation surveyed between 1980 and 2010 in 158 plant communities spread across 46 locations.We found biome-wide trends of increased height of the plant canopy and maximum observed plant height for most vascular growth forms; increased abundance of litter; increased abundance of evergreen, low-growing and tall shrubs; and decreased abundance of bare ground. Intersite comparisons indicated an association between the degree of summer warming and change in vascular plant abundance, with shrubs, forbs and rushes increasing with warming. However, the association was dependent on the climate zone, the moisture regime and the presence of permafrost. Our data provide plot-scale evidence linking changes in vascular plant abundance to local summer warming in widely dispersed tundra locations across the globe.
  •  
12.
  • Maes, S.L., et al. (författare)
  • Environmental drivers of increased ecosystem respiration in a warming tundra
  • 2024
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 629:8010, s. 105-113
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic and alpine tundra ecosystems are large reservoirs of organic carbon. Climate warming may stimulate ecosystem respiration and release carbon into the atmosphere. The magnitude and persistency of this stimulation and the environmental mechanisms that drive its variation remain uncertain. This hampers the accuracy of global land carbon–climate feedback projections. Here we synthesize 136 datasets from 56 open-top chamber in situ warming experiments located at 28 arctic and alpine tundra sites which have been running for less than 1 year up to 25 years. We show that a mean rise of 1.4 °C [confidence interval (CI) 0.9–2.0 °C] in air and 0.4 °C [CI 0.2–0.7 °C] in soil temperature results in an increase in growing season ecosystem respiration by 30% [CI 22–38%] (n = 136). Our findings indicate that the stimulation of ecosystem respiration was due to increases in both plant-related and microbial respiration (n = 9) and continued for at least 25 years (n = 136). The magnitude of the warming effects on respiration was driven by variation in warming-induced changes in local soil conditions, that is, changes in total nitrogen concentration and pH and by context-dependent spatial variation in these conditions, in particular total nitrogen concentration and the carbon:nitrogen ratio. Tundra sites with stronger nitrogen limitations and sites in which warming had stimulated plant and microbial nutrient turnover seemed particularly sensitive in their respiration response to warming. The results highlight the importance of local soil conditions and warming-induced changes therein for future climatic impacts on respiration.
  •  
13.
  • Michelsen, B., et al. (författare)
  • Drug retention, inactive disease and response rates in 1860 patients with axial spondyloarthritis initiating secukinumab treatment: routine care data from 13 registries in the EuroSpA collaboration
  • 2020
  • Ingår i: RMD open. - : BMJ. - 2056-5933. ; 6:3
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVES: To explore 6-month and 12-month secukinumab effectiveness in patients with axial spondyloarthritis (axSpA) overall, as well as across (1) number of previous biologic/targeted synthetic disease-modifying antirheumatic drugs (b/tsDMARDs), (2) time since diagnosis and (3) different European registries. METHODS: Real-life data from 13 European registries participating in the European Spondyloarthritis Research Collaboration Network were pooled. Kaplan-Meier with log-rank test, Cox regression, χ² and logistic regression analyses were performed to assess 6-month and 12-month secukinumab retention, inactive disease/low-disease-activity states (Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) <2/<4, Ankylosing Spondylitis Disease Activity Score (ASDAS) <1.3/<2.1) and response rates (BASDAI50, Assessment of Spondyloarthritis International Society (ASAS) 20/40, ASDAS clinically important improvement (ASDAS-CII) and ASDAS major improvement (ASDAS-MI)). RESULTS: We included 1860 patients initiating secukinumab as part of routine care. Overall 6-month/12-month secukinumab retention rates were 82%/72%, with significant (p<0.001) differences between the registries (6-month: 70-93%, 12-month: 53-86%) and across number of previous b/tsDMARDs (b/tsDMARD-naïve: 90%/73%, 1 prior b/tsDMARD: 83%/73%, ≥2 prior b/tsDMARDs: 78%/66%). Overall 6-month/12-month BASDAI<4 were observed in 51%/51%, ASDAS<1.3 in 9%/11%, BASDAI50 in 53%/47%, ASAS40 in 28%/22%, ASDAS-CII in 49%/46% and ASDAS-MI in 25%/26% of the patients. All rates differed significantly across number of previous b/tsDMARDs, were numerically higher for b/tsDMARD-naïve patients and varied significantly across registries. Overall, time since diagnosis was not associated with secukinumab effectiveness. CONCLUSIONS: In this study of 1860 patients from 13 European countries, we present the first comprehensive real-life data on effectiveness of secukinumab in patients with axSpA. Overall, secukinumab retention rates after 6 and 12months of treatment were high. Secukinumab effectiveness was consistently better for bionaïve patients, independent of time since diagnosis and differed across the European countries. © Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.
  •  
14.
  • Nissen, M., et al. (författare)
  • The impact of a csDMARD in combination with a TNF inhibitor on drug retention and clinical remission in axial spondylarthritis
  • 2022
  • Ingår i: Rheumatology. - : Oxford University Press (OUP). - 1462-0324 .- 1462-0332. ; 61:12, s. 4741-4751
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives Many axial spondylarthritis (axSpA) patients receive a conventional synthetic DMARD (csDMARD) in combination with a TNF inhibitor (TNFi). However, the value of this co-therapy remains unclear. The objectives were to describe the characteristics of axSpA patients initiating a first TNFi as monotherapy compared with co-therapy with csDMARD, to compare one-year TNFi retention and remission rates, and to explore the impact of peripheral arthritis. Methods Data was collected from 13 European registries. One-year outcomes included TNFi retention and hazard ratios (HR) for discontinuation with 95% CIs. Logistic regression was performed with adjusted odds ratios (OR) of achieving remission (Ankylosing Spondylitis Disease Activity Score (ASDAS)-CRP < 1.3 and/or BASDAI < 2) and stratified by treatment. Inter-registry heterogeneity was assessed using random-effect meta-analyses, combined results were presented when heterogeneity was not significant. Peripheral arthritis was defined as >= 1 swollen joint at baseline (=TNFi start). Results Amongst 24 171 axSpA patients, 32% received csDMARD co-therapy (range across countries: 13.5% to 71.2%). The co-therapy group had more baseline peripheral arthritis and higher CRP than the monotherapy group. One-year TNFi-retention rates (95% CI): 79% (78, 79%) for TNFi monotherapy vs 82% (81, 83%) with co-therapy (P < 0.001). Remission was obtained in 20% on monotherapy and 22% on co-therapy (P < 0.001); adjusted OR of 1.16 (1.07, 1.25). Remission rates at 12 months were similar in patients with/without peripheral arthritis. Conclusion This large European study of axial SpA patients showed similar one-year treatment outcomes for TNFi monotherapy and csDMARD co-therapy, although considerable heterogeneity across countries limited the identification of certain subgroups (e.g. peripheral arthritis) that may benefit from co-therapy.
  •  
15.
  • Sarneel, Judith M., et al. (författare)
  • Reading tea leaves worldwide : decoupled drivers of initial litter decomposition mass-loss rate and stabilization
  • 2024
  • Ingår i: Ecology Letters. - : John Wiley & Sons. - 1461-023X .- 1461-0248. ; 27:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models.
  •  
16.
  • Sarneel, Judith M., et al. (författare)
  • Reading tea leaves worldwide: Decoupled drivers of initial litter decomposition mass-loss rate and stabilization
  • 2024
  • Ingår i: ECOLOGY LETTERS. - : John Wiley & Sons. - 1461-023X .- 1461-0248. ; 27:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models.
  •  
17.
  • Ørnbjerg, L. M., et al. (författare)
  • Predictors of ASDAS-CRP inactive disease in axial spondyloarthritis during treatment with TNF-inhibitors: Data from the EuroSpA collaboration
  • 2022
  • Ingår i: Seminars in Arthritis and Rheumatism. - : Elsevier BV. - 0049-0172 .- 1532-866X. ; 56
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: In patients with axial spondyloarthritis (axSpA) initiating their first tumor necrosis factor alpha-inhibitor (TNFi), we aimed to identify common baseline predictors of Ankylosing Spondylitis Disease Activity Score (ASDAS-CRP) inactive disease (primary objective) and clinically important improvement (CII) at 6 months, and drug retention at 12-months across 15 European registries. Methods: Baseline demographic and clinical characteristics were collected. Outcomes were investigated per registry and in pooled data using logistic regression analyses on multiply imputed data. Results: The consistency of baseline predictors in individual registries justified pooling the data. In the pooled dataset (n = 21,196), the 6-month rates for ASDAS inactive disease and ASDAS CII were 26% and 51%, and the 12-month drug retention rate 65% in patients with available data (n = 9,845, n = 6,948 and n = 21,196, respectively). Nine common baseline predictors of ASDAS inactive disease, ASDAS CII and 12-month drug retention were identified, and the odds ratios (95%-confidence interval) for ASDAS inactive disease were: age, per year: 0.97 (0.97–0.98), men vs. women: 1.88 (1.60–2.22), current vs. non-smoking: 0.76 (0.63–0.91), HLA-B27 positive vs. negative: 1.51 (1.20–1.91), TNF start year 2015–2018 vs. 2009–2014: 1.24 (1.06–1.45), CRP>10 vs. ≤10 mg/l: 1.49 (1.25–1.77), one unit increase in health assessment questionnaire (HAQ): 0.77 (0.58–1.03), one-millimeter (mm) increase in Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) fatigue and spinal pain: 0.99 (0.99–1.00) and 0.99 (0.99–1.99), respectively Conclusion: Common baseline predictors of treatment response and adherence to TNFi could be identified across data from 15 European registries, indicating that they may be universal across different axSpA populations.
  •  
18.
  • Björkman, Anne, 1981, et al. (författare)
  • Tundra Trait Team: A database of plant traits spanning the tundra biome
  • 2018
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 27:12, s. 1402-1411
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2018 The Authors Global Ecology and Biogeography Published by John Wiley & Sons Ltd Motivation: The Tundra Trait Team (TTT) database includes field-based measurements of key traits related to plant form and function at multiple sites across the tundra biome. This dataset can be used to address theoretical questions about plant strategy and trade-offs, trait–environment relationships and environmental filtering, and trait variation across spatial scales, to validate satellite data, and to inform Earth system model parameters. Main types of variable contained: The database contains 91,970 measurements of 18 plant traits. The most frequently measured traits (>1,000 observations each) include plant height, leaf area, specific leaf area, leaf fresh and dry mass, leaf dry matter content, leaf nitrogen, carbon and phosphorus content, leaf C:N and N:P, seed mass, and stem specific density. Spatial location and grain: Measurements were collected in tundra habitats in both the Northern and Southern Hemispheres, including Arctic sites in Alaska, Canada, Greenland, Fennoscandia and Siberia, alpine sites in the European Alps, Colorado Rockies, Caucasus, Ural Mountains, Pyrenees, Australian Alps, and Central Otago Mountains (New Zealand), and sub-Antarctic Marion Island. More than 99% of observations are georeferenced. Time period and grain: All data were collected between 1964 and 2018. A small number of sites have repeated trait measurements at two or more time periods. Major taxa and level of measurement: Trait measurements were made on 978 terrestrial vascular plant species growing in tundra habitats. Most observations are on individuals (86%), while the remainder represent plot or site means or maximums per species. Software format: csv file and GitHub repository with data cleaning scripts in R; contribution to TRY plant trait database (www.try-db.org) to be included in the next version release.
  •  
19.
  • Burli, S., et al. (författare)
  • A common soil temperature threshold for the upper limit of alpine grasslands in European mountains
  • 2021
  • Ingår i: Alpine Botany. - : Springer Science and Business Media LLC. - 1664-2201 .- 1664-221X. ; 131, s. 41-52
  • Tidskriftsartikel (refereegranskat)abstract
    • While climatic research about treeline has a long history, the climatic conditions corresponding to the upper limit of closed alpine grasslands remain poorly understood. Here, we propose a climatic definition for this limit, the 'grassline', in analogy to the treeline, which is based on the growing season length and the soil temperature. Eighty-seven mountain summits across ten European mountain ranges, covering three biomes (boreal, temperate, Mediterranean), were inventoried as part of the GLORIA project. Vascular plant cover was estimated visually in 326 plots of 1 x 1 m. Soil temperatures were measured in situ for 2-7 years, from which the length of the growing season and mean temperature were derived. The climatic conditions corresponding to 40% plant cover were defined as the thresholds for alpine grassland. Closed vegetation was present in locations with a mean growing season soil temperature warmer than 4.9 degrees C, or a minimal growing season length of 85 days, with the growing season defined as encompassing days with daily mean >= 1 degrees C. Hence, the upper limit of closed grasslands was associated with a mean soil temperature close to that previously observed at the treeline, and in accordance with physiological thresholds to growth in vascular plants. In contrast to trees, whose canopy temperature is coupled with air temperature, small-stature alpine plants benefit from the soil warmed by solar radiation and consequently, they can grow at higher elevations. Since substrate stability is necessary for grasslands to occur at their climatic limit, the grassline rarely appears as a distinct linear feature.
  •  
20.
  •  
21.
  • Georgiadis, S, et al. (författare)
  • CAN SINGLE IMPUTATION TECHNIQUES FOR BASDAI COMPONENTS RELIABLY CALCULATE THE COMPOSITE SCORE IN AXIAL SPONDYLOARTHRITIS PATIENTS?
  • 2022
  • Ingår i: ANNALS OF THE RHEUMATIC DISEASES. - : BMJ. - 0003-4967 .- 1468-2060. ; 81, s. 212-213
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • In axial spondyloarthritis (axSpA), Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) is a key patient-reported outcome. However, one or more of its components may be missing when recorded in clinical practice.ObjectivesTo determine whether an individual patient’s BASDAI at a given timepoint can be reliably calculated with different single imputation techniques and to explore the impact of the number of missing components and/or differences between missingness of individual components.MethodsReal-life data from axSpA patients receiving tumour necrosis factor inhibitors (TNFi) from 13 countries in the European Spondyloarthritis (EuroSpA) Research Collaboration Network were utilized [1]. We studied missingness in BASDAI components based on simulations in a complete dataset, where we applied and expanded the approach of Ramiro et al. [2]. After introducing one or more missing components completely at random, BASDAI was calculated from the available components and with three different single imputation techniques: possible middle value (i.e. 50) of the component and mean and median of the available components. Differences between the observed (original) and calculated scores were assessed and correct classification of patients as having BASDAI<40 mm was additionally evaluated. For the setting with one missing component, differences arising between missing one of components 1-4 versus 5-6 were explored. Finally, the performance of imputations in relation to the values of the original score was investigated.ResultsA total of 19,894 axSpA patients with at least one complete BASDAI registration at any timepoint were included. 59,126 complete BASDAI registrations were utilized for the analyses with a mean BASDAI of 38.5 (standard deviation 25.9). Calculating BASDAI from the available components and imputing with mean or median showed similar levels of agreement (Table 1). When allowing one missing component, >90% had a difference of ≤6.9 mm between the original and calculated scores and >95% were correctly classified as BASDAI<40 (Table 1). However, separate analyses of components 1-4 and 5-6 as a function of the BASDAI score suggested that imputing any one of the first four BASDAI components resulted in a level of agreement <90% for specific BASDAI values while imputing one of the stiffness components 5-6 always reached a level of agreement >90% (Figure 1, upper panels). As expected, it was observed that regardless of the BASDAI component set to missing and the imputation technique used, correct classification of patients as BASDAI<40 was less than 95% for values around the cutoff (Figure 1, lower panels).Table 1.Level of agreement between the original and calculated BASDAI and correct classification for BASDAI<40 mmLevel of agreement with Dif≤6.9 mm* (%)Correct classification for BASDAI<40 mm** (%)1 missing componentAvailable93.996.9Value 5073.996.3Mean94.296.8Median93.196.82 missing componentsAvailable83.794.8Value 5040.792.8Mean83.594.8Median82.894.73 missing componentsAvailable71.992.6Value 5028.187.3Mean72.292.6Median69.792.2* The levels of agreement with a difference (Dif) of ≤6.9 mm between the original and calculated scores were based on the half of the smallest detectable change. Agreement of >90% was considered as acceptable. ** Correct classification of >95% was considered as acceptable.Figure 1.Level of agreement between the original and calculated BASDAI and correct classification for BASDAI<40 mm as a function of the original scoreConclusionBASDAI calculation with available components gave similar results to single imputation of missing components with mean or median. Only when missing one of BASDAI components 5 or 6, single imputation techniques can reliably calculate individual BASDAI scores. However, missing any single component value results in misclassification of patients with original BASDAI scores close to 40.References[1]Ørnbjerg et al. (2019). Ann Rheum Dis, 78(11), 1536-1544.[2]Ramiro et al. (2014). Rheumatology, 53(2), 374-376.AcknowledgementsNovartis Pharma AG and IQVIA for supporting the EuroSpA collaboration.Disclosure of InterestsStylianos Georgiadis Grant/research support from: Novartis, Myriam Riek Grant/research support from: Novartis, Christos Polysopoulos Grant/research support from: Novartis, Almut Scherer Grant/research support from: Novartis, Daniela Di Giuseppe: None declared, Gareth T. Jones Speakers bureau: Janssen, Grant/research support from: AbbVie, Pfizer, UCB, Amgen, GSK, Merete Lund Hetland Grant/research support from: Abbvie, Biogen, BMS, Celltrion, Eli Lilly, Janssen Biologics B.V, Lundbeck Fonden, MSD, Medac, Pfizer, Roche, Samsung Biopies, Sandoz, Novartis, Mikkel Østergaard Speakers bureau: Abbvie, BMS, Boehringer-Ingelheim, Celgene, Eli-Lilly, Hospira, Janssen, Merck, Novartis, Novo, Orion, Pfizer, Regeneron, Roche, Sandoz, Sanofi, UCB, Consultant of: Abbvie, BMS, Boehringer-Ingelheim, Celgene, Eli-Lilly, Hospira, Janssen, Merck, Novartis, Novo, Orion, Pfizer, Regeneron, Roche, Sandoz, Sanofi, UCB, Grant/research support from: Abbvie, BMS, Merck, Celgene, Novartis, Simon Horskjær Rasmussen Grant/research support from: Novartis, Johan K Wallman Consultant of: AbbVie, Amgen, Celgene, Eli Lilly, Novartis, Bente Glintborg Grant/research support from: Pfizer, Abbvie, BMS, Anne Gitte Loft Speakers bureau: AbbVie, Janssen, Lilly, MSD, Novartis, Pfizer, Roche, UCB, Consultant of: AbbVie, Janssen, Lilly, MSD, Novartis, Pfizer, Roche, UCB, Karel Pavelka Speakers bureau: Pfizer, MSD, BMS, UCB, Amgen, Egis, Roche, AbbVie, Consultant of: Pfizer, MSD, BMS, UCB, Amgen, Egis, Roche, AbbVie, Jakub Zavada Speakers bureau: Abbvie, Elli-Lilly, Sandoz, Novartis, Egis, UCB, Consultant of: Abbvie, Elli-Lilly, Sandoz, Novartis, Egis, UCB, Merih Birlik: None declared, Ayten Yazici Grant/research support from: Roche, Brigitte Michelsen Grant/research support from: Novartis, Eirik kristianslund: None declared, Adrian Ciurea Speakers bureau: AbbVie, Eli Lilly, Merck Sharp & Dohme, Novartis, Pfizer, Consultant of: AbbVie, Eli Lilly, Merck Sharp & Dohme, Novartis, Pfizer, Michael J. Nissen Speakers bureau: AbbVie, Eli Lilly, Janssens, Novartis, Pfizer, Consultant of: AbbVie, Eli Lilly, Janssens, Novartis, Pfizer, Ana Maria Rodrigues Speakers bureau: Abbvie, Amgen, Consultant of: Abbvie, Amgen, Grant/research support from: Novartis, Pfizer, Amgen, Maria Jose Santos Speakers bureau: Abbvie, AstraZeneca, Lilly, Novartis, Pfizer, Gary Macfarlane Grant/research support from: GSK, Anna-Mari Hokkanen Grant/research support from: MSD, Heikki Relas Speakers bureau: Abbvie, Celgene, Pfizer, UCB, Viatris, Consultant of: Abbvie, Celgene, Pfizer, UCB, Viatris, Catalin Codreanu Speakers bureau: AbbVie, Amgen, Boehringer Ingelheim, Ewopharma, Lilly, Novartis, Pfizer, Consultant of: AbbVie, Amgen, Boehringer Ingelheim, Ewopharma, Lilly, Novartis, Pfizer, Corina Mogosan: None declared, Ziga Rotar Speakers bureau: Abbvie, Novartis, MSD, Medis, Biogen, Eli Lilly, Pfizer, Sanofi, Lek, Janssen, Consultant of: Abbvie, Novartis, MSD, Medis, Biogen, Eli Lilly, Pfizer, Sanofi, Lek, Janssen, Matija Tomsic Speakers bureau: Abbvie, Amgen, Biogen, Eli Lilly, Janssen, Medis, MSD, Novartis, Pfizer, Sanofi, Sandoz-Lek, Consultant of: Abbvie, Amgen, Biogen, Eli Lilly, Janssen, Medis, MSD, Novartis, Pfizer, Sanofi, Sandoz-Lek, Björn Gudbjornsson Speakers bureau: Amgen, Novartis, Consultant of: Amgen, Novartis, Arni Jon Geirsson: None declared, Pasoon Hellamand Grant/research support from: Novartis, Marleen G.H. van de Sande Speakers bureau: Eli Lilly, Novartis, UCB, Janssen, Abbvie, Consultant of: Eli Lilly, Novartis, UCB, Janssen, Abbvie, Grant/research support from: Eli Lilly, Novartis, UCB, Janssen, Abbvie, Isabel Castrejon: None declared, Manuel Pombo-Suarez Consultant of: Abbvie, MSD, Roche, Bruno Frediani: None declared, Florenzo Iannone Speakers bureau: Abbvie, Amgen, AstraZeneca, BMS, Galapagos, Janssen, Lilly, MSD, Novartis, Pfizer, Roche, UCB, Consultant of: Abbvie, Amgen, AstraZeneca, BMS, Galapagos, Janssen, Lilly, MSD, Novartis, Pfizer, Roche, UCB, Lykke Midtbøll Ørnbjerg Grant/research support from: Novartis
  •  
22.
  • Glintborg, B., et al. (författare)
  • One-Year Treatment Outcomes of Secukinumab Versus Tumor Necrosis Factor Inhibitors in Spondyloarthritis: Results From Five Nordic Biologic Registries Including More Than 10,000 Treatment Courses
  • 2022
  • Ingår i: Arthritis Care & Research. - : Wiley. - 2151-464X .- 2151-4658. ; 74:5, s. 748-758
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective To describe baseline characteristics and to compare treatment effectiveness of secukinumab versus tumor necrosis factor inhibitors (TNFi) in patients with spondyloarthritis (SpA) using adalimumab as the main comparator. Methods This was an observational, prospective cohort study. Patients with SpA (clinical ankylosing spondylitis, nonradiographic axial SpA, or undifferentiated SpA) starting secukinumab or a TNFi during 2015-2018 were identified from 5 Nordic clinical rheumatology registries. Data on comorbidities and extraarticular manifestations (psoriasis, uveitis, and inflammatory bowel disease) were captured from national registries (data available in 94% of patients) and included in multivariable analyses. We assessed 1-year treatment retention (crude survival curves, adjusted hazard ratios [HRadj] for treatment discontinuation) and 6-month response rates (Ankylosing Spondylitis Disease Activity Score [ASDAS] score <2.1, Bath Ankylosing Spondylitis Disease Activity Index [BASDAI] <40 mm, crude/LUNDEX-adjusted, adjusted logistic regression analyses with odds ratios [ORs]) stratified by line of biologic treatment (first, second, and third plus). Results In total, 10,853 treatment courses (842 secukinumab and 10,011 TNFi, of which 1,977 were adalimumab) were included. The proportions of patients treated with secukinumab during the first, second, and third-plus lines of treatment were 1%, 6%, and 22%, respectively). Extraarticular manifestations varied across treatments, while other baseline characteristics were largely similar. Secukinumab had a 1-year retention comparable to adalimumab as a first or second line of treatment but poorer as a third-plus line of therapy (secukinumab 56% [95% confidence interval (95% CI) 51-61%] versus adalimumab 70% [95% CI 64-75%]; HRadj 1.43 [95% CI 1.12-1.81]). Across treatment lines, secukinumab had poorer estimates for 6-month response rates than adalimumab, statistically significantly only for the third-plus line (adjusted analyses: ASDAS score <2.1 OR 0.56 [95% CI 0.35-0.90]; BASDAI <40 mm OR 0.62 [95% CI 0.41-0.95]). Treatment outcomes varied across the 5 TNFi. Conclusion Secukinumab was mainly used in biologics-experienced patients with SpA. Secukinumab and adalimumab performed similarly in patients who had failed a first biologic, although with increasing prior biologic exposure, adalimumab was superior.
  •  
23.
  • Gottfried, M., et al. (författare)
  • Continent-wide response of mountain vegetation to climate change
  • 2012
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 2:2, s. 111-115
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate impact studies have indicated ecological fingerprints of recent global warming across a wide range of habitats(1,2). Although these studies have shown responses from various local case studies, a coherent large-scale account on temperature-driven changes of biotic communities has been lacking(3,4). Here we use 867 vegetation samples above the treeline from 60 summit sites in all major European mountain systems to show that ongoing climate change gradually transforms mountain plant communities. We provide evidence that the more cold-adapted species decline and the more warm-adapted species increase, a process described here as thermophilization. At the scale of individual mountains this general trend may not be apparent, but at the larger, continental scale we observed a significantly higher abundance of thermophilic species in 2008, compared with 2001. Thermophilization of mountain plant communities mirrors the degree of recent warming and is more pronounced in areas where the temperature increase has been higher. In view of the projected climate change(5,6) the observed transformation suggests a progressive decline of cold mountain habitats and their biota.
  •  
24.
  • Kropp, Heather, et al. (författare)
  • Shallow soils are warmer under trees and tall shrubs across Arctic and Boreal ecosystems
  • 2021
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Soils are warming as air temperatures rise across the Arctic and Boreal region concurrent with the expansion of tall-statured shrubs and trees in the tundra. Changes in vegetation structure and function are expected to alter soil thermal regimes, thereby modifying climate feedbacks related to permafrost thaw and carbon cycling. However, current understanding of vegetation impacts on soil temperature is limited to local or regional scales and lacks the generality necessary to predict soil warming and permafrost stability on a pan-Arctic scale. Here we synthesize shallow soil and air temperature observations with broad spatial and temporal coverage collected across 106 sites representing nine different vegetation types in the permafrost region. We showed ecosystems with tall-statured shrubs and trees (>40 cm) have warmer shallow soils than those with short-statured tundra vegetation when normalized to a constant air temperature. In tree and tall shrub vegetation types, cooler temperatures in the warm season do not lead to cooler mean annual soil temperature indicating that ground thermal regimes in the cold-season rather than the warm-season are most critical for predicting soil warming in ecosystems underlain by permafrost. Our results suggest that the expansion of tall shrubs and trees into tundra regions can amplify shallow soil warming, and could increase the potential for increased seasonal thaw depth and increase soil carbon cycling rates and lead to increased carbon dioxide loss and further permafrost thaw.
  •  
25.
  • Michelsen, B., et al. (författare)
  • Impact of discordance between patient's and evaluator's global assessment on treatment outcomes in 14 868 patients with spondyloarthritis
  • 2020
  • Ingår i: Rheumatology. - : Oxford University Press (OUP). - 1462-0324 .- 1462-0332. ; 59:9, s. 2455-2461
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives. To assess the impact of 'patient's minus evaluator's global assessment of disease activity' (Delta PEG) at treatment initiation on retention and remission rates of TNF inhibitors (TNFi) in psoriatic arthritis (PsA) and axial spondyloarthritis (axSpA) patients across Europe. Methods. Real-life data from PsA and axSpA patients starting their first TNFi from 11 countries in the European Spondyloarthritis Research Collaboration Network were pooled. Retention rates were compared by Kaplan-Meier analyses with log-rank test and by Cox regression, and remission rates by chi(2) test and by logistic regression across quartiles of baseline Delta PEG, separately in female and male PsA and axSpA patients. Results. We included 14 868 spondyloarthritis (5855 PsA, 9013 axSpA) patients. Baseline Delta PEG was negatively associated with 6/12/24-months' TNFi retention rates in female and male PsA and axSpA patients (P < 0.001), with 6/12/24-months' BASDAI < 2 (P <= 0.002) and ASDAS < 1.3 (P <= 0.005) in axSpA patients, and with DAS28CRP(4)<2.6 (P <= 0.04) and DAPSA28 <= 4 (P <= 0.01), but not DAS28CRP(3)<2.6 (P >= 0.13) in PsA patients, with few exceptions on remission rates. Retention and remission rates were overall lower in female than male patients. Conclusion. High baseline patient's compared with evaluator's global assessment was associated with lower 6/12/24-months' remission as well as retention rates of first TNFi in both PsA and axSpA patients. These results highlight the importance of discordance between patient's and evaluator's perspective on disease outcomes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 117
Typ av publikation
tidskriftsartikel (97)
konferensbidrag (17)
forskningsöversikt (3)
Typ av innehåll
refereegranskat (95)
övrigt vetenskapligt/konstnärligt (22)
Författare/redaktör
Michelsen, B (28)
Gudbjornsson, B (24)
Askling, J (19)
Glintborg, B (19)
Rotar, Z. (19)
Tomsic, M. (19)
visa fler...
Codreanu, C. (18)
Ciurea, A (18)
di Giuseppe, D (17)
Michelsen, H (16)
Iannone, F. (16)
Ostergaard, M. (15)
Pavelka, K (14)
Zavada, J (13)
Michelsen, Anders (12)
Hetland, ML (12)
Santos, MJ (12)
Ionescu, R. (11)
Sanchez-Piedra, C. (11)
Hetland, M. L. (11)
Lindström, Ulf (10)
Nordstrom, D (10)
Relas, H (10)
Geirsson, AJ (9)
Fauconnier, J (9)
Arnaud, C. (9)
Colver, A (9)
Parkinson, K. (8)
Parkes, J (8)
Nissen, MJ (8)
Molau, Ulf, 1951 (7)
Jacobsson, Lennart T ... (7)
Björk, Robert G., 19 ... (7)
Thyen, U. (7)
Backheden, M (7)
Barcelos, A. (7)
Kristianslund, E (7)
Wallman, JK (7)
Ueland, T (6)
Beckung, Eva, 1950 (6)
Björkman, Anne, 1981 (6)
Marcelli, M. (6)
McManus, V (6)
Santos, M. J. (6)
Myers-Smith, Isla H. (6)
Cooper, Elisabeth J. (6)
Onipchenko, Vladimir ... (6)
Leosdottir, M. (6)
Rixen, C. (6)
Laas, K (6)
visa färre...
Lärosäte
Karolinska Institutet (53)
Göteborgs universitet (42)
Lunds universitet (27)
Umeå universitet (14)
Uppsala universitet (10)
Sveriges Lantbruksuniversitet (6)
visa fler...
Stockholms universitet (4)
Högskolan i Gävle (2)
Mälardalens universitet (2)
Linköpings universitet (2)
Kungliga Tekniska Högskolan (1)
Högskolan i Halmstad (1)
Örebro universitet (1)
Jönköping University (1)
Chalmers tekniska högskola (1)
Naturhistoriska riksmuseet (1)
VTI - Statens väg- och transportforskningsinstitut (1)
visa färre...
Språk
Engelska (117)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (38)
Medicin och hälsovetenskap (33)
Lantbruksvetenskap (3)
Samhällsvetenskap (2)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy