SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Michelsen Anders) "

Sökning: WFRF:(Michelsen Anders)

  • Resultat 1-25 av 62
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Munch, Marie W., et al. (författare)
  • Effect of 12 mg vs 6 mg of Dexamethasone on the Number of Days Alive Without Life Support in Adults With COVID-19 and Severe Hypoxemia The COVID STEROID 2 Randomized Trial
  • 2021
  • Ingår i: Journal of the American Medical Association (JAMA). - : AMER MEDICAL ASSOC. - 0098-7484 .- 1538-3598. ; 326:18, s. 1807-1817
  • Tidskriftsartikel (refereegranskat)abstract
    • Question What is the effect of 12 mg vs 6 mg of dexamethasone on the number of days alive without life support at 28 days in patients with COVID-19 and severe hypoxemia? Findings In this randomized trial that included 1000 patients with COVID-19 and severe hypoxemia, treatment with 12 mg/d of dexamethasone resulted in 22.0 days alive without life support at 28 days compared with 20.5 days in those receiving 6 mg/d of dexamethasone. This difference was not statistically significant. Meaning Compared with 6 mg of dexamethasone, 12 mg of dexamethasone did not statistically significantly reduce the number of days alive without life support at 28 days. This multicenter randomized clinical trial compares the effects of 12 mg/d vs 6 mg/d of dexamethasone in patients with COVID-19 and severe hypoxemia. IMPORTANCE A daily dose with 6 mg of dexamethasone is recommended for up to 10 days in patients with severe and critical COVID-19, but a higher dose may benefit those with more severe disease. OBJECTIVE To assess the effects of 12 mg/d vs 6 mg/d of dexamethasone in patients with COVID-19 and severe hypoxemia. DESIGN, SETTING, AND PARTICIPANTS A multicenter, randomized clinical trial was conducted between August 2020 and May 2021 at 26 hospitals in Europe and India and included 1000 adults with confirmed COVID-19 requiring at least 10 L/min of oxygen or mechanical ventilation. End of 90-day follow-up was on August 19, 2021. INTERVENTIONS Patients were randomized 1:1 to 12 mg/d of intravenous dexamethasone (n = 503) or 6 mg/d of intravenous dexamethasone (n = 497) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was the number of days alive without life support (invasive mechanical ventilation, circulatory support, or kidney replacement therapy) at 28 days and was adjusted for stratification variables. Of the 8 prespecified secondary outcomes, 5 are included in this analysis (the number of days alive without life support at 90 days, the number of days alive out of the hospital at 90 days, mortality at 28 days and at 90 days, and >= 1 serious adverse reactions at 28 days). RESULTS Of the 1000 randomized patients, 982 were included (median age, 65 [IQR, 55-73] years; 305 [31%] women) and primary outcome data were available for 971 (491 in the 12 mg of dexamethasone group and 480 in the 6 mg of dexamethasone group). The median number of days alive without life support was 22.0 days (IQR, 6.0-28.0 days) in the 12 mg of dexamethasone group and 20.5 days (IQR, 4.0-28.0 days) in the 6 mg of dexamethasone group (adjusted mean difference, 1.3 days [95% CI, 0-2.6 days]; P = .07). Mortality at 28 days was 27.1% in the 12 mg of dexamethasone group vs 32.3% in the 6 mg of dexamethasone group (adjusted relative risk, 0.86 [99% CI, 0.68-1.08]). Mortality at 90 days was 32.0% in the 12 mg of dexamethasone group vs 37.7% in the 6 mg of dexamethasone group (adjusted relative risk, 0.87 [99% CI, 0.70-1.07]). Serious adverse reactions, including septic shock and invasive fungal infections, occurred in 11.3% in the 12 mg of dexamethasone group vs 13.4% in the 6 mg of dexamethasone group (adjusted relative risk, 0.83 [99% CI, 0.54-1.29]). CONCLUSIONS AND RELEVANCE Among patients with COVID-19 and severe hypoxemia, 12 mg/d of dexamethasone compared with 6 mg/d of dexamethasone did not result in statistically significantly more days alive without life support at 28 days. However, the trial may have been underpowered to identify a significant difference.
  •  
2.
  • Holmstrup, Martin, et al. (författare)
  • Long-term and realistic global change manipulations had low impact on diversity of soil biota in temperate heathland
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • In a dry heathland ecosystem we manipulated temperature (warming), precipitation (drought) and atmospheric concentration of CO2 in a full-factorial experiment in order to investigate changes in below-ground biodiversity as a result of future climate change. We investigated the responses in community diversity of nematodes, enchytraeids, collembolans and oribatid mites at two and eight years of manipulations. We used a structural equation modelling (SEM) approach analyzing the three manipulations, soil moisture and temperature, and seven soil biological and chemical ariables. The analysis revealed a persistent and positive effect of elevated CO2 on litter C:N ratio. After two years of treatment, the fungi to bacteria ratio was increased by warming, and the diversities within oribatid mites, collembolans and nematode groups were all affected by elevated CO2 mediated through increased litter C:N ratio. After eight years of treatment, however, the CO2-increased litter C:N ratio did not influence the diversity in any of the four fauna groups. The number of significant correlations between treatments, food source quality, and soil biota diversities was reduced from six to three after two and eight years, respectively. These results suggest a remarkable resilience within the soil biota against global climate change treatments in the long term.
  •  
3.
  • Sarneel, Judith M., et al. (författare)
  • Reading tea leaves worldwide : decoupled drivers of initial litter decomposition mass-loss rate and stabilization
  • 2024
  • Ingår i: Ecology Letters. - : John Wiley & Sons. - 1461-023X .- 1461-0248. ; 27:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models.
  •  
4.
  • Sarneel, Judith M., et al. (författare)
  • Reading tea leaves worldwide: Decoupled drivers of initial litter decomposition mass-loss rate and stabilization
  • 2024
  • Ingår i: ECOLOGY LETTERS. - : John Wiley & Sons. - 1461-023X .- 1461-0248. ; 27:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models.
  •  
5.
  • Alatalo, Juha M., et al. (författare)
  • Impacts of twenty years of experimental warming on soil carbon, nitrogen, moisture and soil mites across alpine/subarctic tundra communities
  • 2017
  • Ingår i: Scientific Reports. - : Macmillan Publishers Ltd.. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • High-altitude and alpine areas are predicted to experience rapid and substantial increases in future temperature, which may have serious impacts on soil carbon, nutrient and soil fauna. Here we report the impact of 20 years of experimental warming on soil properties and soil mites in three contrasting plant communities in alpine/subarctic Sweden. Long-term warming decreased juvenile oribatid mite density, but had no effect on adult oribatids density, total mite density, any major mite group or the most common species. Long-term warming also caused loss of nitrogen, carbon and moisture from the mineral soil layer in mesic meadow, but not in wet meadow or heath or from the organic soil layer. There was a significant site effect on the density of one mite species, Oppiella neerlandica, and all soil parameters. A significant plot-scale impact on mites suggests that small-scale heterogeneity may be important for buffering mites from global warming. The results indicated that juvenile mites may be more vulnerable to global warming than adult stages. Importantly, the results also indicated that global warming may cause carbon and nitrogen losses in alpine and tundra mineral soils and that its effects may differ at local scale.
  •  
6.
  • Andersen, Emil Alexander Sherman, et al. (författare)
  • Nitrogen isotopes reveal high N retention in plants and soil of old Norse and Inuit deposits along a wet-dry arctic fjord transect in Greenland
  • 2020
  • Ingår i: Plant and Soil. - : Springer. - 0032-079X .- 1573-5036. ; 455:1-2, s. 241-255
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: Plant growth in the Arctic is often nutrient limited due to temperature constraints on decomposition and low atmospheric input of nitrogen (N). Local hotspots of nutrient enrichment found in up to 4000-year-old archaeological deposits can be used to explore the recycling and long-term retention of nutrients in arctic ecosystems.Methods: We investigated old Inuit and Norse deposits (known as middens) and adjacent tundra ecosystems along a wet-dry fjord gradient in western Greenland to explore the isotopic fingerprinting of plant and soil carbon and nitrogen (C-13/C-12 and(15)N/N-14) derived from human presence.Results: At all locations we observed a significant isotopic fingerprint in soil and plant N related to human deposits. This demonstrates a century-long legacy of past human habitation on plant and soil characteristics and indicates a surprisingly high N retention in these ecosystems. This is consistent with the significantly higher plant biomass in areas with archaeological deposits.Conclusion: Vegetation composition and N in plants and soils displayed marked differences along the wet-dry fjord gradient. Furthermore, the profound nutrient enrichment and organic matter accumulation in archaeological deposits compared to surrounding tundra demonstrates a century-long legacy of past habitation on plant and soil characteristics as well as efficient N cycling with surprisingly limited N loss.
  •  
7.
  • Andresen, Louise C., 1974, et al. (författare)
  • Moderate nitrogen retention in temperate heath ecosystem after elevated CO2, drought and warming through 7years
  • 2023
  • Ingår i: European Journal of Soil Science. - 1351-0754 .- 1365-2389. ; 74:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Nitrogen (N) dynamic is one of the main controlling factors of responses to climate change in N-limited terrestrial ecosystems, which rely on nutrient re-cycling and retention. In this study we investigate the N partitioning in ecosystem compartments of a grassland heath, and the impact of multiple climate change factors on long-term N retention after 15N pulse labelling. The impacts of elevated carbon dioxide (eCO2), warming and drought and the treatments in combination on ecosystem N retention was investigated in a field scale manipulation experiment. A six-year time-course was assessed by pulse-labelling with the stable N isotope 15N and by sampling after 1 day, 1 year and 6years. After the six years we observed that the total ecosystem retained 42 % of the amended 15N across treatments (recovery of the amended 15N in the pool). The fate of the applied 15N was mainly stabilisation in soil, with 36 % recovery, while the plant compartment and microbial biomass each retained only 1-2 % of the added 15N. This suggests a moderate retention of N, for all treatments, as compared to similar long-term studies of forest ecosystems. A decreased ammonium and vegetation N pool combined with higher 15N retention in the soil at eCO2 treatments suggests that eCO2 promoted processes that immobilize N in soil, while warming counteracted this when combined with eCO2. Drought treatments contrastingly increased the vegetation N pool. We conclude that as the organic soil layer has the main capacity for N storage in a temperate heathland-grassland, it is important for buffering nutrient availability and maintaining a resilient ecosystem. However, the full treatment combination of drought, warming and eCO2 did not differ in 15N recovery from the controls, suggesting unchanged long-term consequences of climate change on retention of pulse added N in this ecosystem.
  •  
8.
  • Andresen, Louise C., 1974, et al. (författare)
  • Patterns of free amino acids in tundra soils reflect mycorrhizal type, shrubification, and warming
  • 2022
  • Ingår i: Mycorrhiza. - : Springer Science and Business Media LLC. - 0940-6360 .- 1432-1890. ; 32:3-4, s. 305-313
  • Tidskriftsartikel (refereegranskat)abstract
    • The soil nitrogen (N) cycle in cold terrestrial ecosystems is slow and organically bound N is an important source of N for plants in these ecosystems. Many plant species can take up free amino acids from these infertile soils, either directly or indirectly via their mycorrhizal fungi. We hypothesized that plant community changes and local plant community differences will alter the soil free amino acid pool and composition; and that long-term warming could enhance this effect. To test this, we studied the composition of extractable free amino acids at five separate heath, meadow, and bog locations in subarctic and alpine Scandinavia, with long-term (13 to 24 years) warming manipulations. The plant communities all included a mixture of ecto-, ericoid-, and arbuscular mycorrhizal plant species. Vegetation dominated by grasses and forbs with arbuscular and non-mycorrhizal associations showed highest soil free amino acid content, distinguishing them from the sites dominated by shrubs with ecto- and ericoid-mycorrhizal associations. Warming increased shrub and decreased moss cover at two sites, and by using redundancy analysis, we found that altered soil free amino acid composition was related to this plant cover change. From this, we conclude that the mycorrhizal type is important in controlling soil N cycling and that expansion of shrubs with ectomycorrhiza (and to some extent ericoid mycorrhiza) can help retain N within the ecosystems by tightening the N cycle.
  •  
9.
  • Andresen, Louise C., et al. (författare)
  • Seasonal changes in nitrogen availability, and root and microbial uptake of (15)N(13)C(9)-phenylalanine and (15)N-ammonium in situ at a temperate heath
  • 2011
  • Ingår i: Applied Soil Ecology. - : Elsevier BV. - 0929-1393. ; 51, s. 94-101
  • Tidskriftsartikel (refereegranskat)abstract
    • In the plant biosynthesis of secondary compounds, phenylalanine is a precursor of condensed tannins. Tannins are deposited into the soil in plant root exudates and dead plant material and have been suggested to precipitate some soil nutrients and hence reduce nutrient availability for plants. Free amino acid, inorganic and microbial N concentration during the growing season was investigated in an ecosystem with a natural tannin chemosphere. The influence of tannins on the uptake of nitrogen in plants and microbes was followed by injecting tannic acid (TA), ammonium-(15)N and phenylalanine-(15)N/(13)C(9). Plants preferred ammonium over phenylalanine, while microbes had no preference. Soil microbes had a 77% uptake of intact phenylalanine. Phenylalanine was acquired intact by both grasses and Calluna, with 63% and 38% uptake of intact phenylalanine in grass fine roots and Calluna roots, respectively. Inorganic N and amino acid concentrations were lowest in the period with highest plant activity and grass root biomass but were unaffected by TA addition. (C) 2011 Elsevier B.V. All rights reserved.
  •  
10.
  • Andresen, Louise C., et al. (författare)
  • Uptake of pulse injected nitrogen by soil microbes and mycorrhizal and non-mycorrhizal plants in a species-diverse subarctic heath ecosystem
  • 2008
  • Ingår i: Plant and Soil. - : Springer Science and Business Media LLC. - 0032-079X .- 1573-5036. ; 313:1-2, s. 283-295
  • Tidskriftsartikel (refereegranskat)abstract
    • N-15 labeled ammonium, glycine or glutamic acid was injected into subarctic heath soil in situ, with the purpose of investigating how the nitrogen added in these pulses was subsequently utilized and cycled in the ecosystem. We analyzed the acquisition of N-15 label in mycorrhizal and non-mycorrhizal plants and in soil microorganisms, in order to reveal probable differences in acquisition patterns between the two functional plant types and between plants and soil microorganisms. Three weeks after the label addition, with the N-15-forms added with same amount of nitrogen per square meter, we analyzed the N-15-enrichment in total soil, in soil K2SO4 (0.5 M) extracts and in the microbial biomass after vacuum-incubation of soil in chloroform and subsequent K2SO4 extraction. Furthermore the N-15-enrichment was analyzed in current years leaves of the dominant plant species sampled three, five and 21 days after label addition. The soil microorganisms had very high N-15 recovery from all the N sources compared to plants. Microorganisms incorporated most N-15 from the glutamic acid source, intermediate amounts of N-15 from the glycine source and least N-15 from the NH4+ source. In contrast to microorganisms, all ten investigated plant species generally acquired more N-15 label from the NH4+ source than from the amino acid sources. Non-mycorrhizal plant species showed higher concentration of N-15 label than mycorrhizal plant species 3 days after labeling, while 21 days after labeling their acquisition of N-15 label from amino acid injection was lower than, and the acquisition of N-15 label from NH4 injection was similar to that of the mycorrhizal species. We conclude that the soil microorganisms were more efficient than plants in acquiring pulses of nutrients which, under natural conditions, occur after e. g. freeze-thaw and dry rewet events, although of smaller size. It also appears that the mycorrhizal plants in the short term may be less efficient than non-mycorrhizal plants in nitrogen acquisition, but in a longer term show larger nitrogen acquisition than non-mycorrhizal plants. However, the differences in N-15 uptake patterns may also be due to differences in leaf longevity and woodiness between plant functional groups.
  •  
11.
  • Baggesen, Nanna, et al. (författare)
  • Phenological stage of tundra vegetation controls bidirectional exchange of BVOCs in a climate change experiment on a subarctic heath
  • 2021
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 27:12, s. 2928-2944
  • Tidskriftsartikel (refereegranskat)abstract
    • Traditionally, biogenic volatile organic compound (BVOC) emissions are often considered a unidirectional flux, from the ecosystem to the atmosphere, but recent studies clearly show the potential for bidirectional exchange. Here we aimed to investigate how warming and leaf litter addition affect the bidirectional exchange (flux) of BVOCs in a long‐term field experiment in the Subarctic. We also assessed changes in net BVOC fluxes in relation to the time of day and the influence of different plant phenological stages. The study was conducted in a full factorial experiment with open top chamber warming and annual litter addition treatments in a tundra heath in Abisko, Northern Sweden. After 18 years of treatments, ecosystem‐level net BVOC fluxes were measured in the experimental plots using proton‐transfer‐reaction time‐of‐flight mass spectrometry (PTR–ToF–MS). The warming treatment increased monoterpene and isoprene emissions by ≈50%. Increasing temperature, due to diurnal variations, can both increase BVOC emission and simultaneously, increase ecosystem uptake. For any given treatment, monoterpene, isoprene, and acetone emissions also increased with increasing ambient air temperatures caused by diurnal variability. Acetaldehyde, methanol, and sesquiterpenes decreased likely due to a deposition flux. For litter addition, only a significant indirect effect on isoprene and monoterpene fluxes (decrease by ~50%–75%) was observed. Litter addition may change soil moisture conditions, leading to changes in plant species composition and biomass, which could subsequently result in changes to BVOC emission compositions. Phenological stages significantly affected fluxes of methanol, isoprene and monoterpenes. We suggest that plant phenological stages differ in impacts on BVOC net emissions, but ambient air temperature and photosynthetically active radiation (PAR) also interact and influence BVOC net emissions differently. Our results may also suggest that BVOC fluxes are not only a response to changes in temperature and light intensity, as the circadian clock also affects emission rates.
  •  
12.
  • Barthelemy, Hélène, et al. (författare)
  • Effect of herbivory on the fate of added 15N-urea in a grazed Arctic tundra
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Mammalian herbivores can strongly influence nitrogen cycling and herbivore urine could be an important component of the nutrient cycle in grazed ecosystems. Despite its potential role for ecosystem productivity and soil processes, the distribution of N from urine in the different ecosystem compartments is poorly understood. This study investigates the fate of 15N enriched urea applied above the plant canopy in two tundra sites either heavily or lightly grazed by reindeer for the last 50 years. We explored the fate of the 15N in the different ecosystem N pools at 2 weeks and 1 years following tracer addition. We hypothesized that cryptogams would take up most N under light grazing, but graminoids most N under heavy grazing. The 15N-urea was rapidly incorporated in cryptogams and aboveground parts of vascular plants, while the soil microbial pool and plant roots sequestered only a marginal proportion of the labelled N applied. Hence, urine addition supports a higher primary production in tundra since most of the nutrients released from urine could be assimilated by the aboveground components with little N reaching the belowground compartments. Mosses and lichens still constituted the largest sink of the 15N-urea 1 year after tracer addition at both levels of grazing intensity demonstrating their large ability to capture and retain N  from urine. Deciduous and evergreen shrubs were just as efficient as graminoids in taking up the 15N-urea. The total recovery of the labelled urea was lower in the heavily grazed sites, suggesting that reindeer reduce the N retention in the system. Rapid incorporation of the applied 15N-urea indicates that arctic plants can take advantage of a pulse of incoming N in the form of urea, which supports a higher primary production. However, whether urine also maintains a high production of forage plants depend on plant community composition, since most urea was recovered in non-forage plants for reindeer.
  •  
13.
  • Barthelemy, Hélène, et al. (författare)
  • Short- and long-term plant and microbial uptake of 15N-labelled urea in a mesic tundra heath, West Greenland
  • 2024
  • Ingår i: Polar Biology. - : Springer Nature. - 0722-4060 .- 1432-2056. ; 47:1, s. 1-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Terrestrial animals are key elements in the cycling of elements in the Arctic where nutrient availability is low. Waste production by herbivores, in particular urine deposition, has a crucial role for nitrogen (N) recycling, still, it remains largely unexplored. Also, experimental evidence is biased toward short-term studies and Arctic regions under high herbivore pressure. In this study, we aimed to examine the fate of N derived from urine in a nutrient poor tundra heath in West Greenland, with historical low level of herbivory. We performed a pulse labelling with 15N-urea over the plant canopy and explored ecosystem N partition and retention in the short-term (2 weeks and 1 year) and longer-term (5 years). We found that all vascular plants, irrespective of their traits, could rapidly take up N-urea, but mosses and lichens were even more efficient. Total 15N enrichment was severely reduced for all plants 5 years after tracer addition, with the exception of cryptogams, indicating that non-vascular plants constituted a long-term sink of 15N-urea. The 15N recovery was also high in the litter suggesting high N immobilization in this layer, potentially delaying the nutrients from urine entering the soil compartment. Long-term 15N recovery in soil microbial biomass was minimal, but as much as 30% of added 15N remained in the non-microbial fraction after 5 years. Our results demonstrate that tundra plants that have evolved under low herbivory pressure are well adapted to quickly take advantage of labile urea, with urine having only a transient effect on soil nutrient availability.
  •  
14.
  • Barthelemy, Hélène, et al. (författare)
  • Urine is an important nitrogen source for plants irrespective of vegetation composition in an Arctic tundra : Insights from a N-15-enriched urea tracer experiment
  • 2018
  • Ingår i: Journal of Ecology. - : Wiley-Blackwell Publishing Inc.. - 0022-0477 .- 1365-2745. ; 106:1, s. 367-378
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Mammalian herbivores can strongly influence nitrogen (N) cycling and herbivore urine could be a central component of the N cycle in grazed ecosystems. Despite its potential role for ecosystem productivity and functioning, the fate of N derived from urine has rarely been investigated in grazed ecosystems. 2. This study explored the fate of N-15-enriched urea in tundra sites that have been either lightly or intensively grazed by reindeer for more than 50years. We followed the fate of the N-15 applied to the plant canopy, at 2weeks and 1year after tracer addition, in the different ecosystem N pools. 3. N-15-urea was rapidly incorporated in cryptogams and in above-ground parts of vascular plants, while the soil microbial pool and plant roots sequestered only a marginal proportion. Furthermore, the litter layer constituted a large sink for the N-15-urea, at least in the short term, indicating a high biological activity in the litter layer and high immobilization in the first phases of organic matter decomposition. 4. Mosses and lichens still constituted the largest sink for the N-15-urea 1year after tracer addition at both levels of grazing intensity demonstrating their large ability to capture and retain N from urine. Despite large fundamental differences in their traits, deciduous and evergreen shrubs were just as efficient as graminoids in taking up the N-15-urea. The total recovery of N-15-urea was lower in the intensively grazed sites, suggesting that reindeer reduce ecosystem N retention. 5. Synthesis. The rapid incorporation of the applied N-15-urea indicates that arctic plants can take advantage of a pulse of incoming N from urine. In addition, N-15 values of all taxa in the heavily grazed sites converged towards the N-15 values for urine, bringing further evidence that urine is an important N source for plants in grazed tundra ecosystems.
  •  
15.
  • Berner, Logan T., et al. (författare)
  • The Arctic plant aboveground biomass synthesis dataset
  • 2024
  • Ingår i: Scientific Data. - : Springer Nature. - 2052-4463. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant biomass is a fundamental ecosystem attribute that is sensitive to rapid climatic changes occurring in the Arctic. Nevertheless, measuring plant biomass in the Arctic is logistically challenging and resource intensive. Lack of accessible field data hinders efforts to understand the amount, composition, distribution, and changes in plant biomass in these northern ecosystems. Here, we present The Arctic plant aboveground biomass synthesis dataset, which includes field measurements of lichen, bryophyte, herb, shrub, and/or tree aboveground biomass (g m−2) on 2,327 sample plots from 636 field sites in seven countries. We created the synthesis dataset by assembling and harmonizing 32 individual datasets. Aboveground biomass was primarily quantified by harvesting sample plots during mid- to late-summer, though tree and often tall shrub biomass were quantified using surveys and allometric models. Each biomass measurement is associated with metadata including sample date, location, method, data source, and other information. This unique dataset can be leveraged to monitor, map, and model plant biomass across the rapidly warming Arctic.
  •  
16.
  • Björkman, Anne, 1981, et al. (författare)
  • Plant functional trait change across a warming tundra biome
  • 2018
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 562:7725, s. 57-62
  • Tidskriftsartikel (refereegranskat)abstract
    • The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations. Spatial temperature–trait relationships were generally strong but soil moisture had a marked influence on the strength and direction of these relationships, highlighting the potentially important influence of changes in water availability on future trait shifts in tundra plant communities. Community height increased with warming across all sites over the past three decades, but other traits lagged far behind predicted rates of change. Our findings highlight the challenge of using space-for-time substitution to predict the functional consequences of future warming and suggest that functions that are tied closely to plant height will experience the most rapid change. They also reveal the strength with which environmental factors shape biotic communities at the coldest extremes of the planet and will help to improve projections of functional changes in tundra ecosystems with climate warming.
  •  
17.
  • Björkman, Anne, 1981, et al. (författare)
  • Tundra Trait Team: A database of plant traits spanning the tundra biome
  • 2018
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 27:12, s. 1402-1411
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2018 The Authors Global Ecology and Biogeography Published by John Wiley & Sons Ltd Motivation: The Tundra Trait Team (TTT) database includes field-based measurements of key traits related to plant form and function at multiple sites across the tundra biome. This dataset can be used to address theoretical questions about plant strategy and trade-offs, trait–environment relationships and environmental filtering, and trait variation across spatial scales, to validate satellite data, and to inform Earth system model parameters. Main types of variable contained: The database contains 91,970 measurements of 18 plant traits. The most frequently measured traits (>1,000 observations each) include plant height, leaf area, specific leaf area, leaf fresh and dry mass, leaf dry matter content, leaf nitrogen, carbon and phosphorus content, leaf C:N and N:P, seed mass, and stem specific density. Spatial location and grain: Measurements were collected in tundra habitats in both the Northern and Southern Hemispheres, including Arctic sites in Alaska, Canada, Greenland, Fennoscandia and Siberia, alpine sites in the European Alps, Colorado Rockies, Caucasus, Ural Mountains, Pyrenees, Australian Alps, and Central Otago Mountains (New Zealand), and sub-Antarctic Marion Island. More than 99% of observations are georeferenced. Time period and grain: All data were collected between 1964 and 2018. A small number of sites have repeated trait measurements at two or more time periods. Major taxa and level of measurement: Trait measurements were made on 978 terrestrial vascular plant species growing in tundra habitats. Most observations are on individuals (86%), while the remainder represent plot or site means or maximums per species. Software format: csv file and GitHub repository with data cleaning scripts in R; contribution to TRY plant trait database (www.try-db.org) to be included in the next version release.
  •  
18.
  • Blok, Daan, et al. (författare)
  • Contrasting above- and belowground organic matter decomposition and carbon and nitrogen dynamics in response to warming in High Arctic tundra
  • 2018
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013. ; 24:6, s. 2660-2672
  • Tidskriftsartikel (refereegranskat)abstract
    • Tundra regions are projected to warm rapidly during the coming decades. The tundra biome holds the largest terrestrial carbon pool, largely contained in frozen permafrost soils. With warming, these permafrost soils may thaw and become available for microbial decomposition, potentially providing a positive feedback to global warming. Warming may directly stimulate microbial metabolism but may also indirectly stimulate organic matter turnover through increased plant productivity by soil priming from root exudates and accelerated litter turnover rates. Here, we assess the impacts of experimental warming on turnover rates of leaf litter, active layer soil and thawed permafrost sediment in two high-arctic tundra heath sites in NE-Greenland, either dominated by evergreen or deciduous shrubs. We incubated shrub leaf litter on the surface of control and warmed plots for 1 and 2 years. Active layer soil was collected from the plots to assess the effects of 8 years of field warming on soil carbon stocks. Finally, we incubated open cores filled with newly thawed permafrost soil for 2 years in the active layer of the same plots. After field incubation, we measured basal respiration rates of recovered thawed permafrost cores in the lab. Warming significantly reduced litter mass loss by 26% after 1 year incubation, but differences in litter mass loss among treatments disappeared after 2 years incubation. Warming also reduced litter nitrogen mineralization and decreased the litter carbon to nitrogen ratio. Active layer soil carbon stocks were reduced 15% by warming, while soil dissolved nitrogen was reduced by half in warmed plots. Warming had a positive legacy effect on carbon turnover rates in thawed permafrost cores, with 10% higher respiration rates measured in cores from warmed plots. These results demonstrate that warming may have contrasting effects on above- and belowground tundra carbon turnover, possibly governed by microbial resource availability.
  •  
19.
  • Callaghan, Terry V., et al. (författare)
  • Ecosystem change and stability over multiple decades in the Swedish subarctic : complex processes and multiple drivers
  • 2013
  • Ingår i: Philosophical Transactions of the Royal Society of London. Biological Sciences. - : The Royal Society. - 0962-8436 .- 1471-2970. ; 368:1624
  • Tidskriftsartikel (refereegranskat)abstract
    • The subarctic environment of northernmost Sweden has changed over the past century, particularly elements of climate and cryosphere. This paper presents a unique geo-referenced record of environmental and ecosystem observations from the area since 1913. Abiotic changes have been substantial. Vegetation changes include not only increases in growth and range extension but also counterintuitive decreases, and stability: all three possible responses. Changes in species composition within the major plant communities have ranged between almost no changes to almost a 50 per cent increase in the number of species. Changes in plant species abundance also vary with particularly large increases in trees and shrubs (up to 600%). There has been an increase in abundance of aspen and large changes in other plant communities responding to wetland area increases resulting from permafrost thaw. Populations of herbivores have responded to varying management practices and climate regimes, particularly changing snow conditions. While it is difficult to generalize and scale-up the site-specific changes in ecosystems, this very site-specificity, combined with projections of change, is of immediate relevance to local stakeholders who need to adapt to new opportunities and to respond to challenges. Furthermore, the relatively small area and its unique datasets are a microcosm of the complexity of Arctic landscapes in transition that remains to be documented.
  •  
20.
  • Cornelissen, Johannes H C, et al. (författare)
  • Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes
  • 2007
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 10:7, s. 619-627
  • Tidskriftsartikel (refereegranskat)abstract
    • Whether climate change will turn cold biomes from large long-term carbon sinks into sources is hotly debated because of the great potential for ecosystem-mediated feedbacks to global climate. Critical are the direction, magnitude and generality of climate responses of plant litter decomposition. Here, we present the first quantitative analysis of the major climate-change-related drivers of litter decomposition rates in cold northern biomes worldwide.Leaf litters collected from the predominant species in 33 global change manipulation experiments in circum-arctic-alpine ecosystems were incubated simultaneously in two contrasting arctic life zones. We demonstrate that longer-term, large-scale changes to leaf litter decomposition will be driven primarily by both direct warming effects and concomitant shifts in plant growth form composition, with a much smaller role for changes in litter quality within species. Specifically, the ongoing warming-induced expansion of shrubs with recalcitrant leaf litter across cold biomes would constitute a negative feedback to global warming. Depending on the strength of other (previously reported) positive feedbacks of shrub expansion on soil carbon turnover, this may partly counteract direct warming enhancement of litter decomposition.
  •  
21.
  • Cruz-Paredes, Carla, et al. (författare)
  • Wood ash application in a managed Norway spruce plantation did not affect ectomycorrhizal diversity or N retention capacity
  • 2019
  • Ingår i: Fungal Ecology. - : Elsevier BV. - 1754-5048. ; 39, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Ectomycorrhizal (ECM) fungi are key players in N cycling in coniferous forests, and forest management such as application of wood ash can affect their functionality. The aim of this study was to determine the effects of wood ash application on ECM fungal mycelial production, capacity to retain N, diversity and community composition. In-growth mesh bags were installed in control and treated plots. After 6 months, 15N labeled ammonium and nitrate were applied into the mesh bags, and 24 h later extramatrical mycelium (EMM) was extracted and analyzed. Wood ash had no effects on EMM in-growth, N retention capacity, diversity or community composition. In contrast, there were significant seasonal differences in the amount of EMM produced. These results demonstrate that applying up to 6 t ha−1 of wood ash in this type of plantation forest is a safe management practice that does not increase N leaching or negatively affect ECM fungi.
  •  
22.
  • Dornelas, M., et al. (författare)
  • BioTIME: A database of biodiversity time series for the Anthropocene
  • 2018
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 27:7, s. 760-786
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. Main types of variables included: The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. Spatial location and grain: BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km(2) (158 cm(2)) to 100 km(2) (1,000,000,000,000 cm(2)). Time period and grainBio: TIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. Major taxa and level of measurement: BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates.
  •  
23.
  • Elberling, Bo, et al. (författare)
  • Soil and Plant Community Characteristics and Dynamics at Zackenberg
  • 2008
  • Ingår i: High-arctic ecosystem dynamics in a changing climate - Ten years of monitoring and research at Zackenberg Research Station, Northeast Greenland (Advances in Ecological Research). - 0065-2504. - 9780123736659 ; 40, s. 223-248
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Arctic soils hold large amounts of nutrients in the weatherable minerals and the soil organic matter, which slowly decompose. The decomposition processes release nutrients to the plant-available nutrient pool as well as greenhouse gases to the atmosphere. Changes in climatic conditions, for example, changes in the distribution of snow, water balance and the length of the growing season, are likely to affect the complex interactions between plants, abiotic and biotic soil processes as well as the composition of soil micro- and macro-fauna and thereby the overall decomposition rates. These interactions, in turn, will influence soil-plant functioning and vegetation composition in the short as well as in the long term. In this chapter, we report on soils and. plant communities and their distribution patterns in the valley Zackenbergdalen and focus on the detailed investigations within five dominating plant communities. These five communities are located along an ecological gradient in the landscape and are closely related to differences in water availability. They are therefore indirectly formed as a result of the distribution of landforms, redistribution of snow and drainage conditions. Each of the plant communities is closely related to specific nutrient levels and degree of soil development including soil element accumulation and translocation, for example, organic carbon. Results presented here show that different parts of the landscape have responded quite differently to the same overall climate changes the last 10 years and thus, most likely in the future too. Fens represent the wettest sites holding large reactive buried carbon stocks. A warmer climate will cause a permafrost degradation, which most likely will result in anoxic decomposition and increasing methane emissions. However, the net gas emissions at fen sites are sensitive to long-term changes in the water table level. Indeed, increasing maximum active layer depth at fen sites has been recorded together with a decreasing water level at Zackenberg. This is in line with the first signs of increasing extension of grasslands at the expense of fens. In contrast, the most exposed and dry areas have less soil carbon, and decomposition processes are periodically water limited. Here, an increase in air temperatures may increase active layer depth more than at fen sites, but water availability will be critical in determining nutrient cycling and plant production. Field manipulation experiments of increasing temperature, water supply and nutrient addition show that soil-plant interactions are sensitive to these variables. However, additional plant-specific investigations are needed before net effects of climate changes on different landscape and plant communities can be integrated in a landscape context and used to assess the net ecosystem effect of future climate scenarios.
  •  
24.
  • Elmendorf, Sarah C., et al. (författare)
  • Global assessment of experimental climate warming on tundra vegetation : heterogeneity over space and time
  • 2012
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 15:2, s. 164-175
  • Forskningsöversikt (refereegranskat)abstract
    • Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change. We address these issues with a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide. The response of plant groups to warming often differed with ambient summer temperature, soil moisture and experimental duration. Shrubs increased with warming only where ambient temperature was high, whereas graminoids increased primarily in the coldest study sites. Linear increases in effect size over time were frequently observed. There was little indication of saturating or accelerating effects, as would be predicted if negative or positive vegetation feedbacks were common. These results indicate that tundra vegetation exhibits strong regional variation in response to warming, and that in vulnerable regions, cumulative effects of long-term warming on tundra vegetation and associated ecosystem consequences have the potential to be much greater than we have observed to date.
  •  
25.
  • Elmendorf, Sarah C., et al. (författare)
  • Plot-scale evidence of tundra vegetation change and links to recent summer warming
  • 2012
  • Ingår i: Nature Climate Change. - : Nature Publishing Group. - 1758-678X .- 1758-6798. ; 2:6, s. 453-457
  • Tidskriftsartikel (refereegranskat)abstract
    • Temperature is increasing at unprecedented rates across most of the tundra biome. Remote-sensing data indicate that contemporary climate warming has already resulted in increased productivity over much of the Arctic, but plot-based evidence for vegetation transformation is not widespread. We analysed change in tundra vegetation surveyed between 1980 and 2010 in 158 plant communities spread across 46 locations.We found biome-wide trends of increased height of the plant canopy and maximum observed plant height for most vascular growth forms; increased abundance of litter; increased abundance of evergreen, low-growing and tall shrubs; and decreased abundance of bare ground. Intersite comparisons indicated an association between the degree of summer warming and change in vascular plant abundance, with shrubs, forbs and rushes increasing with warming. However, the association was dependent on the climate zone, the moisture regime and the presence of permafrost. Our data provide plot-scale evidence linking changes in vascular plant abundance to local summer warming in widely dispersed tundra locations across the globe.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 62
Typ av publikation
tidskriftsartikel (53)
bokkapitel (5)
annan publikation (2)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (58)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Michelsen, Anders (49)
Rinnan, Riikka (11)
Olofsson, Johan (8)
Elberling, Bo (7)
Dorrepaal, Ellen (6)
Molau, Ulf, 1951 (6)
visa fler...
Ueland, Thor (6)
Alatalo, Juha M. (6)
Himmelmann, Anders (6)
Michelsen, Annika E. (6)
Kontny, Frederic (6)
Jonasson, Sven (6)
Myers-Smith, Isla H. (6)
Wallentin, Lars, 194 ... (5)
Bertilsson, Maria (5)
Becker, Richard C. (5)
Siegbahn, Agneta, 19 ... (5)
Storey, Robert F. (5)
Åkerblom, Axel, 1977 ... (5)
Björk, Robert G., 19 ... (5)
Hofgaard, Annika (5)
Lévesque, Esther (5)
Henry, Gregory H.R. (5)
Aukrust, Pål (4)
Oberbauer, Steven F. (4)
Beier, Claus (4)
Ström, Lena (4)
Andresen, Louise C., ... (4)
Klanderud, Kari (4)
Rousk, Kathrin (4)
Hik, David S. (4)
Soudzilovskaia, Nade ... (4)
Ghukasyan, Tatevik (4)
Elmendorf, Sarah C. (4)
Cornelissen, J. Hans ... (3)
Forbes, Bruce C. (3)
Grogan, Paul (3)
Laudon, Hjalmar (3)
James, Stefan, 1964- (3)
Stark, Sari (3)
Bååth, Erland (3)
Björkman, Anne, 1981 (3)
Vandvik, Vigdis (3)
Liljefors, Max (3)
Tang, Jing (3)
Heijmans, Monique M. ... (3)
Barthelemy, Hélène (3)
Arndal, Marie F. (3)
Aurela, Mika (3)
Iversen, Colleen M. (3)
visa färre...
Lärosäte
Lunds universitet (31)
Umeå universitet (19)
Göteborgs universitet (12)
Uppsala universitet (11)
Sveriges Lantbruksuniversitet (7)
Stockholms universitet (4)
visa fler...
Högskolan i Gävle (3)
Jönköping University (2)
Luleå tekniska universitet (1)
Högskolan i Halmstad (1)
Mälardalens universitet (1)
Linköpings universitet (1)
Karolinska Institutet (1)
VTI - Statens väg- och transportforskningsinstitut (1)
visa färre...
Språk
Engelska (62)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (49)
Medicin och hälsovetenskap (8)
Lantbruksvetenskap (5)
Humaniora (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy