SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Milliken W.) "

Search: WFRF:(Milliken W.)

  • Result 1-14 of 14
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  • Correa, D. F., et al. (author)
  • Geographic patterns of tree dispersal modes in Amazonia and their ecological correlates
  • 2023
  • In: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 32:1, s. 49-69
  • Journal article (peer-reviewed)abstract
    • Aim To investigate the geographic patterns and ecological correlates in the geographic distribution of the most common tree dispersal modes in Amazonia (endozoochory, synzoochory, anemochory and hydrochory). We examined if the proportional abundance of these dispersal modes could be explained by the availability of dispersal agents (disperser-availability hypothesis) and/or the availability of resources for constructing zoochorous fruits (resource-availability hypothesis). Time period Tree-inventory plots established between 1934 and 2019. Major taxa studied Trees with a diameter at breast height (DBH) >= 9.55 cm. Location Amazonia, here defined as the lowland rain forests of the Amazon River basin and the Guiana Shield. Methods We assigned dispersal modes to a total of 5433 species and morphospecies within 1877 tree-inventory plots across terra-firme, seasonally flooded, and permanently flooded forests. We investigated geographic patterns in the proportional abundance of dispersal modes. We performed an abundance-weighted mean pairwise distance (MPD) test and fit generalized linear models (GLMs) to explain the geographic distribution of dispersal modes. Results Anemochory was significantly, positively associated with mean annual wind speed, and hydrochory was significantly higher in flooded forests. Dispersal modes did not consistently show significant associations with the availability of resources for constructing zoochorous fruits. A lower dissimilarity in dispersal modes, resulting from a higher dominance of endozoochory, occurred in terra-firme forests (excluding podzols) compared to flooded forests. Main conclusions The disperser-availability hypothesis was well supported for abiotic dispersal modes (anemochory and hydrochory). The availability of resources for constructing zoochorous fruits seems an unlikely explanation for the distribution of dispersal modes in Amazonia. The association between frugivores and the proportional abundance of zoochory requires further research, as tree recruitment not only depends on dispersal vectors but also on conditions that favour or limit seedling recruitment across forest types.
  •  
5.
  • Muscarella, Robert, et al. (author)
  • The global abundance of tree palms
  • 2020
  • In: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 29:9, s. 1495-1514
  • Journal article (peer-reviewed)abstract
    • AimPalms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change.LocationTropical and subtropical moist forests.Time periodCurrent.Major taxa studiedPalms (Arecaceae).MethodsWe assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≥10 cm diameter at breast height) abundance relative to co‐occurring non‐palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure.ResultsOn average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long‐term climate stability. Life‐form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non‐tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above‐ground biomass, but the magnitude and direction of the effect require additional work.ConclusionsTree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests.
  •  
6.
  • Farley, K.A., et al. (author)
  • In situ radiometric and exposure age dating of the martian surface
  • 2014
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 343:6169
  • Journal article (peer-reviewed)abstract
    • We determined radiogenic and cosmogenic noble gases in a mudstone on the floor of Gale Crater. A K-Ar age of 4.21 ± 0.35 billion years represents a mixture of detrital and authigenic components and confirms the expected antiquity of rocks comprising the crater rim. Cosmic-ray-produced 3He, 21Ne, and 36Ar yield concordant surface exposure ages of 78 ± 30 million years. Surface exposure occurred mainly in the present geomorphic setting rather than during primary erosion and transport. Our observations are consistent with mudstone deposition shortly after the Gale impact or possibly in a later event of rapid erosion and deposition. The mudstone remained buried until recent exposure by wind-driven scarp retreat. Sedimentary rocks exposed by this mechanism may thus offer the best potential for organic biomarker preservation against destruction by cosmic radiation.
  •  
7.
  • Householder, John Ethan, et al. (author)
  • One sixth of Amazonian tree diversity is dependent on river floodplains
  • 2024
  • In: NATURE ECOLOGY & EVOLUTION. - 2397-334X.
  • Journal article (peer-reviewed)abstract
    • Amazonia's floodplain system is the largest and most biodiverse on Earth. Although forests are crucial to the ecological integrity of floodplains, our understanding of their species composition and how this may differ from surrounding forest types is still far too limited, particularly as changing inundation regimes begin to reshape floodplain tree communities and the critical ecosystem functions they underpin. Here we address this gap by taking a spatially explicit look at Amazonia-wide patterns of tree-species turnover and ecological specialization of the region's floodplain forests. We show that the majority of Amazonian tree species can inhabit floodplains, and about a sixth of Amazonian tree diversity is ecologically specialized on floodplains. The degree of specialization in floodplain communities is driven by regional flood patterns, with the most compositionally differentiated floodplain forests located centrally within the fluvial network and contingent on the most extraordinary flood magnitudes regionally. Our results provide a spatially explicit view of ecological specialization of floodplain forest communities and expose the need for whole-basin hydrological integrity to protect the Amazon's tree diversity and its function.
  •  
8.
  • Peripato, Vinicius, et al. (author)
  • More than 10,000 pre-Columbian earthworks are still hidden throughout Amazonia
  • 2023
  • In: Science (New York, N.Y.). - 1095-9203. ; 382:6666, s. 103-109
  • Journal article (peer-reviewed)abstract
    • Indigenous societies are known to have occupied the Amazon basin for more than 12,000 years, but the scale of their influence on Amazonian forests remains uncertain. We report the discovery, using LIDAR (light detection and ranging) information from across the basin, of 24 previously undetected pre-Columbian earthworks beneath the forest canopy. Modeled distribution and abundance of large-scale archaeological sites across Amazonia suggest that between 10,272 and 23,648 sites remain to be discovered and that most will be found in the southwest. We also identified 53 domesticated tree species significantly associated with earthwork occurrence probability, likely suggesting past management practices. Closed-canopy forests across Amazonia are likely to contain thousands of undiscovered archaeological sites around which pre-Columbian societies actively modified forests, a discovery that opens opportunities for better understanding the magnitude of ancient human influence on Amazonia and its current state.
  •  
9.
  • ter Steege, Hans, et al. (author)
  • Mapping density, diversity and species-richness of the Amazon tree flora
  • 2023
  • In: COMMUNICATIONS BIOLOGY. - 2399-3642. ; 6:1
  • Journal article (peer-reviewed)abstract
    • Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution. A study mapping the tree species richness in Amazonian forests shows that soil type exerts a strong effect on species richness, probably caused by the areas of these forest types. Cumulative water deficit, tree density and temperature seasonality affect species richness at a regional scale.
  •  
10.
  • Fishman, Neil S., et al. (author)
  • Pyritization history in the late Cambrian Alum Shale, Scania, Sweden: Evidence for ongoing diagenetic processes
  • 2020
  • In: Mudstone diagenesis: Research perspectives for shale hydrocarbon reservoirs, seals, and source rocks. - 9780891814252 ; 120, s. 83-102
  • Book chapter (peer-reviewed)abstract
    • Detailed diagenetic studies of the late Cambrian Alum Shale in southern Sweden were undertaken across an interval that includes the peak Steptoean Positive Carbon Isotope Excursion (SPICE) event to evaluate the pyrite mineralization history in the formation. Samples were collected from the Andrarum-3 core (Scania, Sweden); here the Alum was deposited in the distal, siliciclastic mudstone-rich end of a shelf system. Abundant cryptobioturbation is observed in the Alum, which points to oxic–dysoxic conditions prevailing during deposition. Petrographic examination of polished thin sections (n = 65) reveals the presence of numerous texturally distinct types of pyrite, including matrix framboids, two different types of framboid concretions (those with rims of iron-dolomite and those lacking rims), disseminated euhedral pyrite crystals, concretions of euhedral pyrite crystals, overgrowths of pyrite on these different pyrite generations, anhedral pyrite intergrown with bedding parallel mineralized fractures (i.e., “beef”), and massive vertical/subvertical accumulations of pyrite.Paragenetic relationships outline the relative timing of formation of the texturally distinct pyrite. Framboids and framboid concretions formed prior to precipitation of any euhedral pyrite crystals, and these pyrite generations precipitated prior to the pyrite overgrowths on them. As Alum Shale sediments are all distorted by these texturally different pyrite generations, they are likely to have formed early in the postdepositional history of the formation. In contrast, pyrite associated with “beef” is likely temporally related to the onset of hydrocarbon generation, which in this part of Sweden is thought to have been many tens of millions of years after deposition. Because vertical/subvertical massive pyrite features distort “beef,” they clearly postdate it. Of all these pyrite textures, only framboid concretions appear to be restricted to the SPICE interval.The texturally distinct nature of the pyrite generations, along with evidence of their formation at different times in the postdepositional history of the Alum Shale, is the key outcome of this petrographic study. Because the petrographic data presented herein point to a postdeposition origin for all generations of pyrite, diagenetic processes—not those processes associated with deposition—were responsible for the complex pyritization history observed in the Alum, in the Andrarum-3 core.
  •  
11.
  • Litvak, M.L., et al. (author)
  • Local variations of bulk hydrogen and chlorine-equivalent neutron absorption content measured at the contact between the Sheepbed and Gillespie Lake units in Yellowknife Bay, Gale Crater, using the DAN instrument onboard Curiosity
  • 2014
  • In: Journal of Geophysical Research - Planets. - 2169-9097 .- 2169-9100. ; 119:6, s. 1259-1275
  • Journal article (peer-reviewed)abstract
    • Data gathered with the Dynamic Albedo of Neutron (DAN) instrument onboard rover Curiosity were analyzed for variations in subsurface neutron flux and tested for possible correlation with local geological context. A special DAN observation campaign was executed, in which 18 adjacent DAN active measurements were acquired every 0.75–1.0 m to search for the variations of subsurface hydrogen content along a 15 m traverse across geologic contacts between the Sheepbed and Gillespie Lake members of the Yellowknife Bay formation. It was found that several subunits in Sheepbed and Gillespie Lake could be characterized with different depth distributions of water-equivalent hydrogen (WEH) and different chlorine-equivalent abundance responsible for the distribution of neutron absorption elements. The variations of the average WEH at the top 60 cm of the subsurface are estimated at up to 2–3%. Chlorine-equivalent neutron absorption abundances ranged within 0.8–1.5%. The largest difference in WEH and chlorine-equivalent neutron absorption distribution is found between Sheepbed and Gillespie Lake.
  •  
12.
  • Pironon, S., et al. (author)
  • The global distribution of plants used by humans
  • 2024
  • In: Science (New York, N.Y.). - 1095-9203. ; 383:6680, s. 293-297
  • Journal article (peer-reviewed)abstract
    • Plants sustain human life. Understanding geographic patterns of the diversity of species used by people is thus essential for the sustainable management of plant resources. Here, we investigate the global distribution of 35,687 utilized plant species spanning 10 use categories (e.g., food, medicine, material). Our findings indicate general concordance between utilized and total plant diversity, supporting the potential for simultaneously conserving species diversity and its contributions to people. Although Indigenous lands across Mesoamerica, the Horn of Africa, and Southern Asia harbor a disproportionate diversity of utilized plants, the incidence of protected areas is negatively correlated with utilized species richness. Finding mechanisms to preserve areas containing concentrations of utilized plants and traditional knowledge must become a priority for the implementation of the Kunming-Montreal Global Biodiversity Framework.
  •  
13.
  •  
14.
  • Vaniman, D.T., et al. (author)
  • Mineralogy of a mudstone at Yellowknife Bay, Gale Crater, Mars
  • 2014
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 343:6169
  • Journal article (peer-reviewed)abstract
    • Sedimentary rocks at Yellowknife Bay (Gale crater) on Mars include mudstone sampled by the Curiosity rover. The samples, John Klein and Cumberland, contain detrital basaltic minerals, calcium sulfates, iron oxide or hydroxides, iron sulfides, amorphous material, and trioctahedral smectites. The John Klein smectite has basal spacing of ~10 angstroms, indicating little interlayer hydration. The Cumberland smectite has basal spacing at both ~13.2 and ~10 angstroms. The larger spacing suggests a partially chloritized interlayer or interlayer magnesium or calcium facilitating H2O retention. Basaltic minerals in the mudstone are similar to those in nearby eolian deposits. However, the mudstone has far less Fe-forsterite, possibly lost with formation of smectite plus magnetite. Late Noachian/Early Hesperian or younger age indicates that clay mineral formation on Mars extended beyond Noachian time.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-14 of 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view