SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mollet Ines G.) "

Sökning: WFRF:(Mollet Ines G.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tattikota, Sudhir G., et al. (författare)
  • miR-184 Regulates Pancreatic beta-Cell Function According to Glucose Metabolism
  • 2015
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 290:33, s. 20284-20294
  • Tidskriftsartikel (refereegranskat)abstract
    • In response to fasting or hyperglycemia, the pancreatic beta-cell alters its output of secreted insulin; however, the pathways governing this adaptive response are not entirely established. Although the precise role of microRNAs (miRNAs) is also unclear, a recurring theme emphasizes their function in cellular stress responses. We recently showed that miR-184, an abundant miRNA in the beta-cell, regulates compensatory proliferation and secretion during insulin resistance. Consistent with previous studies showing miR-184 suppresses insulin release, expression of this miRNA was increased in islets after fasting, demonstrating an active role in the beta-cell as glucose levels lower and the insulin demand ceases. Additionally, miR-184 was negatively regulated upon the administration of a sucrose-rich diet in Drosophila, demonstrating strong conservation of this pathway through evolution. Furthermore, miR-184 and its target Argonaute2 remained inversely correlated as concentrations of extracellular glucose increased, underlining a functional relationship between this miRNA and its targets. Lastly, restoration of Argonaute2 in the presence of miR-184 rescued suppression of miR-375-targeted genes, suggesting these genes act in a coordinated manner during changes in the metabolic context. Together, these results highlight the adaptive role of miR-184 according to glucose metabolism and suggest the regulatory role of this miRNA in energy homeostasis is highly conserved.
  •  
2.
  • Edsfeldt, Andreas, et al. (författare)
  • Proinflammatory Role of Sphingolipids and Glycosphingolipids in the Human Atherosclerotic Plaque
  • 2016
  • Ingår i: Arteriosclerosis, Thrombosis and Vascular Biology. - 1524-4636. ; 36:6, s. 1132-1140
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Lipids are central to the development of atherosclerotic plaques. Specifically, which lipids are culprits remains controversial, and promising targets have failed in clinical studies. Sphingolipids are bioactive lipids present in atherosclerotic plaques, and they have been suggested to have both proatherogenic and antiatherogenic. However, the biological effects of these lipids remain unknown in the human atherosclerotic plaque. The aim of this study was to assess plaque levels of sphingolipids and investigate their potential association with and contribution to plaque vulnerability.APPROACH AND RESULTS: Glucosylceramide, lactosylceramide, ceramide, dihydroceramide, sphingomyelin, and sphingosine-1-phosphate were analyzed in homogenates from 200 human carotid plaques using mass spectrometry. Inflammatory activity was determined by analyzing plaque levels of cytokines and plaque histology. Caspase-3 was analyzed by ELISA technique. Expression of regulatory enzymes was analyzed with RNA sequencing. Human coronary artery smooth muscle cells were used to analyze the potential role of the 6 sphingolipids as inducers of plaque inflammation and cellular apoptosis in vitro. All sphingolipids were increased in plaques associated with symptoms and correlated with inflammatory cytokines. All sphingolipids, except sphingosine-1-phosphate, also correlated with histological markers of plaque instability. Lactosylceramide, ceramide, sphingomyelin, and sphingosine-1-phosphate correlated with caspase-3 activity. In vitro experiments revealed that glucosylceramide, lactosylceramide, and ceramide induced cellular apoptosis. All analyzed sphingolipids induced an inflammatory response in human coronary artery smooth muscle cells.CONCLUSIONS: This study shows for the first time that sphingolipids and particularly glucosylceramide are associated with and are possible inducers of plaque inflammation and instability, pointing to sphingolipid metabolic pathways as possible novel therapeutic targets.
  •  
3.
  • Kjellqvist, Sanela, et al. (författare)
  • Identification of Shared and Unique Serum Lipid Profiles in Diabetes Mellitus and Myocardial Infarction
  • 2016
  • Ingår i: Journal of the American Heart Association. - 2047-9980. ; 5:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Background-Diabetes mellitus (DM) and cardiovascular disease are associated with dyslipidemia, but the detailed lipid molecular pattern in both diseases remains unknown. Methods and Results-We used shotgun mass spectrometry to determine serum levels of 255 molecular lipids in 316 controls, 171 DM, and 99 myocardial infarction (MI) events from a cohort derived from the Malmo Diet and Cancer study. Orthogonal projections to latent structures analyses were conducted between the lipids and clinical parameters describing DM or MI. Fatty acid desaturases (FADS) and elongation of very long chain fatty acid protein 5 (ELOVL5) activities were estimated by calculating product to precursor ratios of polyunsaturated fatty acids in complex lipids. FADS genotypes encoding these desaturases were then tested for association with lipid levels and ratios. Differences in the levels of lipids belonging to the phosphatidylcholine and triacylglyceride (TAG) classes contributed the most to separating DM from controls. TAGs also played a dominating role in discriminating MI from controls. Levels of C18:2 fatty acids in complex lipids were lower both in DM and MI versus controls (DM, P=0.004; MI, P=6.0E-06) at least due to an acceleration in the metabolic flux from C18: 2 to C20:4 (eg, increased estimated ELOVL5: DM, P=0.02; MI, P=0.04, and combined elongase-desaturase activities: DM, P=3.0E-06; MI, P=2.0E-06). Minor allele carriers of FADS genotypes were associated with increased levels of C18: 2 (P <= 0.007) and lower desaturase activity (P <= 0.002). Conclusions-We demonstrate a possible relationship between decreased levels of C18: 2 in complex lipids and DM or MI. We thereby highlight the importance of molecular lipids in the pathogenesis of both diseases.
  •  
4.
  • Ofori, Jones K, et al. (författare)
  • Confluence does not affect the expression of miR-375 and its direct targets in rat and human insulin-secreting cell lines
  • 2017
  • Ingår i: PeerJ. - : PeerJ. - 2167-8359. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • MicroRNAs are small non-coding RNAs, which negatively regulate the expression of target genes. They have emerged as important modulators in beta cell compensation upon increased metabolic demand, failure of which leads to reduced insulin secretion and type 2 diabetes. To elucidate the function of miRNAs in beta cells, insulin-secreting cell lines, such as the rat insulinoma INS-1 832/13 and the human EndoC-βH1, are widely used. Previous studies in the cancer field have suggested that miRNA expression is influenced by confluency of adherent cells. We therefore aimed to investigate whether one of the most enriched miRNAs in the pancreatic endocrine cells, miR-375, and two of its validated targets in mouse, Cav1 and Aifm1, were differentially-expressed in cell cultures with different confluences. Additionally, we measured the expression of other miRNAs, such as miR-152, miR-130a, miR-132, miR-212 and miR-200a, with known roles in beta cell function. We did not see any significant expression changes of miR-375 nor any of the two targets, in both the rat and human beta cell lines at different confluences. Interestingly, among the other miRNAs measured, the expression of miR-132 and miR-212 positively correlated with confluence, but only in the INS-1 832/13 cells. Our results show that the expression of miR-375 and other miRNAs with known roles in beta cell function is independent of, or at least minimally influenced by the density of proliferating adherent cells, especially within the confluence range optimal for functional assays to elucidate miRNA-dependent regulatory mechanisms in the beta cell.
  •  
5.
  • Salunkhe, Vishal A., et al. (författare)
  • Dual Effect of Rosuvastatin on Glucose Homeostasis Through Improved Insulin Sensitivity and Reduced Insulin Secretion
  • 2016
  • Ingår i: EBioMedicine. - : Elsevier. - 2352-3964. ; 10, s. 185-194
  • Tidskriftsartikel (refereegranskat)abstract
    • Statins are beneficial in the treatment of cardiovascular disease (CVD), but these lipid-lowering drugs are associated with increased incidence of new on-set diabetes. The cellular mechanisms behind the development of diabetes by statins are elusive. Here we have treated mice on normal diet (ND) and high fat diet (HFD) with rosuvastatin. Under ND rosuvastatin lowered blood glucose through improved insulin sensitivity and increased glucose uptake in adipose tissue. In vitro rosuvastatin reduced insulin secretion and insulin content in islets. In the beta cell Ca(2+) signaling was impaired and the density of granules at the plasma membrane was increased by rosuvastatin treatment. HFD mice developed insulin resistance and increased insulin secretion prior to administration of rosuvastatin. Treatment with rosuvastatin decreased the compensatory insulin secretion and increased glucose uptake. In conclusion, our data shows dual effects on glucose homeostasis by rosuvastatin where insulin sensitivity is improved, but beta cell function is impaired.
  •  
6.
  • Tattikota, Sudhir G, et al. (författare)
  • MiR-184 regulates pancreatic β-cell function according to glucose metabolism.
  • 2015
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 290:33, s. 20284-20294
  • Tidskriftsartikel (refereegranskat)abstract
    • In response to fasting or hyperglycemia, the pancreatic β-cell alters its output of secreted insulin; however the pathways governing this adaptive response are not entirely established. While the precise role of microRNAs (miRNAs) is also unclear, a recurring theme emphasizes their function in cellular stress responses. We recently showed that miR-184, an abundant miRNA in the β-cell, regulates compensatory proliferation and secretion during insulin resistance. Consistent with previous studies showing miR-184 suppresses insulin release, expression of this miRNA was increased in islets after fasting, demonstrating an active role in the β-cell as glucose levels lower and the insulin demand ceases. Additionally, miR-184 was negatively regulated upon administration of a sucrose-rich diet in Drosophila demonstrating strong conservation of this pathway through evolution. Furthermore, miR-184 and its target Argonaute2 (Ago2) remained inversely correlated as concentrations of extracellular glucose increased, underlining a functional relationship between this miRNA and its targets. Lastly, restoration of Ago2 in the presence of miR-184 rescued suppression of miR-375-targeted genes suggesting these genes act in a coordinated manner during changes in the metabolic context. Together, these results highlight the adaptive role of miR-184 according to glucose metabolism and suggest the regulatory role of this miRNA in energy homeostasis is highly conserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy