SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Momose T.) "

Sökning: WFRF:(Momose T.)

  • Resultat 1-16 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Akiyama, E., et al. (författare)
  • DISCOVERY OF A DISK GAP CANDIDATE AT 20 AU IN TW HYDRAE
  • 2015
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 802:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a new Subaru/HiCIAO high-contrast H-band polarized intensity (PI) image of a nearby transitional disk associated with TW Hydrae. The scattered light from the disk was detected from 0 ''.2 to 1 ''.5 (11-81 AU) and the PI image shows a clear axisymmetric depression in PI at similar to 0 ''.4 (similar to 20 AU) from the central star, similar to the similar to 80 AU gap previously reported from Hubble Space Telescope images. The azimuthal PI profile also shows that the disk beyond 0 ''.2 is almost axisymmetric. We discuss two possible scenarios explaining the origin of the PI depression: (1) a gap structure may exist at similar to 20 AU from the central star because of a shallow slope seen in the PI profile, and (2) grain growth may be occurring in the inner region of the disk. Multi-band observations at near-infrared and millimeter/submillimeter wavelengths play a complementary role in investigating dust opacity and may help reveal the origin of the gap more precisely.
  •  
2.
  • Grady, C., et al. (författare)
  • The outer disks of Herbig stars from the UV to NIR
  • 2015
  • Ingår i: Astrophysics and Space Science. - : Springer Science and Business Media LLC. - 0004-640X .- 1572-946X. ; 355:2, s. 253-266
  • Forskningsöversikt (refereegranskat)abstract
    • Spatially-resolved imaging of Herbig stars and related objects began with HST, but intensified with commissioning of high-contrast imagers on 8-m class telescopes. The bulk of the data taken from the ground have been polarized intensity imagery at H-band, with the majority of the sources observed as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) survey. Sufficiently many systems have been imaged that we discuss disk properties in scattered, polarized light in terms of groups defined by the IR spectral energy distribution. We find novel phenomena in many of the disks, including spiral density waves, and discuss the disks in terms of clearing mechanisms. Some of the disks have sufficient data to map the dust and gas components, including water ice dissociation products.
  •  
3.
  •  
4.
  • Ahmadi, M., et al. (författare)
  • An improved limit on the charge of antihydrogen from stochastic acceleration
  • 2016
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 529:7586, s. 373-
  • Tidskriftsartikel (refereegranskat)abstract
    • Antimatter continues to intrigue physicists because of its apparent absence in the observable Universe. Current theory requires that matter and antimatter appeared in equal quantities after the Big Bang, but the Standard Model of particle physics offers no quantitative explanation for the apparent disappearance of half the Universe. It has recently become possible to study trapped atoms(1-4) of antihydrogen to search for possible, as yet unobserved, differences in the physical behaviour of matter and antimatter. Here we consider the charge neutrality of the antihydrogen atom. By applying stochastic acceleration to trapped antihydrogen atoms, we determine an experimental bound on the antihydrogen charge, Qe, of vertical bar Q vertical bar < 0.71 parts per billion (one standard deviation), in which e is the elementary charge. This bound is a factor of 20 less than that determined from the best previous measurement(5) of the antihydrogen charge. The electrical charge of atoms and molecules of normal matter is known(6) to be no greater than about 10(-21)e for a diverse range of species including H-2, He and SF6. Charge-parity-time symmetry and quantum anomaly cancellation(7) demand that the charge of antihydrogen be similarly small. Thus, our measurement constitutes an improved limit and a test of fundamental aspects of the Standard Model. If we assume charge superposition and use the best measured value of the antiproton charge(8), then we can place a new limit on the positron charge anomaly (the relative difference between the positron and elementary charge) of about one part per billion (one standard deviation), a 25-fold reduction compared to the current best measurement(8),(9).
  •  
5.
  • Ahmadi, M., et al. (författare)
  • Antihydrogen accumulation for fundamental symmetry tests
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Antihydrogen, a positron bound to an antiproton, is the simplest anti-atom. Its structure and properties are expected to mirror those of the hydrogen atom. Prospects for precision comparisons of the two, as tests of fundamental symmetries, are driving a vibrant programme of research. In this regard, a limiting factor in most experiments is the availability of large numbers of cold ground state antihydrogen atoms. Here, we describe how an improved synthesis process results in a maximum rate of 10.5 +/- 0.6 atoms trapped and detected per cycle, corresponding to more than an order of magnitude improvement over previous work. Additionally, we demonstrate how detailed control of electron, positron and antiproton plasmas enables repeated formation and trapping of antihydrogen atoms, with the simultaneous retention of atoms produced in previous cycles. We report a record of 54 detected annihilation events from a single release of the trapped anti-atoms accumulated from five consecutive cycles.
  •  
6.
  • Ahmadi, M., et al. (författare)
  • Characterization of the 1S-2S transition in antihydrogen
  • 2018
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 557:7703, s. 71-
  • Tidskriftsartikel (refereegranskat)abstract
    • In 1928, Dirac published an equation(1) that combined quantum mechanics and special relativity. Negative-energy solutions to this equation, rather than being unphysical as initially thought, represented a class of hitherto unobserved and unimagined particles-antimatter. The existence of particles of antimatter was confirmed with the discovery of the positron(2) (or anti-electron) by Anderson in 1932, but it is still unknown why matter, rather than antimatter, survived after the Big Bang. As a result, experimental studies of antimatter(3-7), including tests of fundamental symmetries such as charge-parity and charge-parity-time, and searches for evidence of primordial antimatter, such as antihelium nuclei, have high priority in contemporary physics research. The fundamental role of the hydrogen atom in the evolution of the Universe and in the historical development of our understanding of quantum physics makes its antimatter counterpart-the antihydrogen atom-of particular interest. Current standard-model physics requires that hydrogen and antihydrogen have the same energy levels and spectral lines. The laser-driven 1S-2S transition was recently observed(8) in antihydrogen. Here we characterize one of the hyperfine components of this transition using magnetically trapped atoms of antihydrogen and compare it to model calculations for hydrogen in our apparatus. We find that the shape of the spectral line agrees very well with that expected for hydrogen and that the resonance frequency agrees with that in hydrogen to about 5 kilohertz out of 2.5 x 10(15) hertz. This is consistent with charge-parity-time invariance at a relative precision of 2 x 10(-12)-two orders of magnitude more precise than the previous determination(8)-corresponding to an absolute energy sensitivity of 2 x 10(-20) GeV.
  •  
7.
  • Ahmadi, M., et al. (författare)
  • Enhanced Control and Reproducibility of Non-Neutral Plasmas
  • 2018
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 120:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The simultaneous control of the density and particle number of non-neutral plasmas confined in Penning-Malmberg traps is demonstrated. Control is achieved by setting the plasma's density by applying a rotating electric field while simultaneously fixing its axial potential via evaporative cooling. This novel method is particularly useful for stabilizing positron plasmas, as the procedures used to collect positrons from radioactive sources typically yield plasmas with variable densities and particle numbers; it also simplifies optimization studies that require plasma parameter scans. The reproducibility achieved by applying this technique to the positron and electron plasmas used by the ALPHA antihydrogen experiment at CERN, combined with other developments, contributed to a 10-fold increase in the antiatom trapping rate.
  •  
8.
  • Ahmadi, M., et al. (författare)
  • Investigation of the fine structure of antihydrogen
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 578:7795, s. 375-380
  • Tidskriftsartikel (refereegranskat)abstract
    • At the historic Shelter Island Conference on the Foundations of Quantum Mechanics in 1947, Willis Lamb reported an unexpected feature in the fine structure of atomic hydrogen: a separation of the 2S(1/2) and 2P(1/2) states(1). The observation of this separation, now known as the Lamb shift, marked an important event in the evolution of modern physics, inspiring others to develop the theory of quantum electrodynamics(2-5). Quantum electrodynamics also describes antimatter, but it has only recently become possible to synthesize and trap atomic antimatter to probe its structure. Mirroring the historical development of quantum atomic physics in the twentieth century, modern measurements on anti-atoms represent a unique approach for testing quantum electrodynamics and the foundational symmetries of the standard model. Here we report measurements of the fine structure in the n = 2 states of antihydrogen, the antimatter counterpart of the hydrogen atom. Using optical excitation of the 1S-2P Lyman-alpha transitions in antihydrogen(6), we determine their frequencies in a magnetic field of 1 tesla to a precision of 16 parts per billion. Assuming the standard Zeeman and hyperfine interactions, we infer the zero-field fine-structure splitting (2P(1/2)-2P(3/2)) in antihydrogen. The resulting value is consistent with the predictions of quantum electrodynamics to a precision of 2 per cent. Using our previously measured value of the 1S-2S transition frequency(6,7), we find that the classic Lamb shift in antihydrogen (2S(1/2)-2P(1/2) splitting at zero field) is consistent with theory at a level of 11 per cent. Our observations represent an important step towards precision measurements of the fine structure and the Lamb shift in the antihydrogen spectrum as tests of the charge-parity-time symmetry(8) and towards the determination of other fundamental quantities, such as the antiproton charge radius(9,10), in this antimatter system. Precision measurements of the 1S-2P transition in antihydrogen that take into account the standard Zeeman and hyperfine effects confirm the predictions of quantum electrodynamics.
  •  
9.
  • Ahmadi, M., et al. (författare)
  • Observation of the 1S-2P Lyman-alpha transition in antihydrogen
  • 2018
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 561:7722, s. 211-217
  • Tidskriftsartikel (refereegranskat)abstract
    • In 1906, Theodore Lyman discovered his eponymous series of transitions in the extreme-ultraviolet region of the atomic hydrogen spectrum(1,2). The patterns in the hydrogen spectrum helped to establish the emerging theory of quantum mechanics, which we now know governs the world at the atomic scale. Since then, studies involving the Lyman-alpha line-the 1S-2P transition at a wavelength of 121.6 nanometres-have played an important part in physics and astronomy, as one of the most fundamental atomic transitions in the Universe. For example, this transition has long been used by astronomers studying the intergalactic medium and testing cosmological models via the so-called 'Lyman-alpha forest('3) of absorption lines at different redshifts. Here we report the observation of the Lyman-alpha transition in the antihydrogen atom, the antimatter counterpart of hydrogen. Using narrow-line-width, nanosecond-pulsed laser radiation, the 1S-2P transition was excited in magnetically trapped antihydrogen. The transition frequency at a field of 1.033 tesla was determined to be 2,466,051.7 +/- 0.12 gigahertz (1 sigma uncertainty) and agrees with the prediction for hydrogen to a precision of 5 x 10(-8). Comparisons of the properties of antihydrogen with those of its well-studied matter equivalent allow precision tests of fundamental symmetries between matter ;and antimatter. Alongside the ground-state hyperfine(4,5) and 1S-2S transitions(6,7) recently observed in antihydrogen, the Lyman-alpha transition will permit laser cooling of antihydrogen(8,9), thus providing a cold and dense sample of anti-atoms for precision spectroscopy and gravity measurements(10). In addition to the observation of this fundamental transition, this work represents both a decisive technological step towards laser cooling of antihydrogen, and the extension of antimatter spectroscopy to quantum states possessing orbital angular momentum.
  •  
10.
  • Ahmadi, M., et al. (författare)
  • Observation of the 1S-2S transition in trapped antihydrogen
  • 2017
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 541:7638, s. 506-510
  • Tidskriftsartikel (refereegranskat)abstract
    • The spectrum of the hydrogen atom has played a central part in fundamental physics over the past 200 years. Historical examples of its importance include the wavelength measurements of absorption lines in the solar spectrum by Fraunhofer, the identification of transition lines by Balmer, Lyman and others, the empirical description of allowed wavelengths by Rydberg, the quantum model of Bohr, the capability of quantum electrodynamics to precisely predict transition frequencies, and modern measurements of the 1S-2S transition by Hansch1 to a precision of a few parts in 10(15). Recent technological advances have allowed us to focus on antihydrogen-the antimatter equivalent of hydrogen(2-4). The Standard Model predicts that there should have been equal amounts of matter and antimatter in the primordial Universe after the Big Bang, but today's Universe is observed to consist almost entirely of ordinary matter. This motivates the study of antimatter, to see if there is a small asymmetry in the laws of physics that govern the two types of matter. In particular, the CPT (charge conjugation, parity reversal and time reversal) theorem, a cornerstone of the Standard Model, requires that hydrogen and antihydrogen have the same spectrum. Here we report the observation of the 1S-2S transition in magnetically trapped atoms of antihydrogen. We determine that the frequency of the transition, which is driven by two photons from a laser at 243 nanometres, is consistent with that expected for hydrogen in the same environment. This laser excitation of a quantum state of an atom of antimatter represents the most precise measurement performed on an anti-atom. Our result is consistent with CPT invariance at a relative precision of about 2 x 10(-10).
  •  
11.
  • Ahmadi, M., et al. (författare)
  • Observation of the hyperfine spectrum of antihydrogen
  • 2017
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 548:7665, s. 66-
  • Tidskriftsartikel (refereegranskat)abstract
    • The observation of hyperfine structure in atomic hydrogen by Rabi and co-workers(1-3) and the measurement(4) of the zero-field ground-state splitting at the level of seven parts in 10(13) are important achievements of mid-twentieth-century physics. The work that led to these achievements also provided the first evidence for the anomalous magnetic moment of the electron(5-8), inspired Schwinger's relativistic theory of quantum electrodynamics(9,10) and gave rise to the hydrogen maser(11), which is a critical component of modern navigation, geo-positioning and very-long-baseline interferometry systems. Research at the Antiproton Decelerator at CERN by the ALPHA collaboration extends these enquiries into the antimatter sector. Recently, tools have been developed that enable studies of the hyperfine structure of antihydrogen(12)-the antimatter counterpart of hydrogen. The goal of such studies is to search for any differences that might exist between this archetypal pair of atoms, and thereby to test the fundamental principles on which quantum field theory is constructed. Magnetic trapping of antihydrogen atoms(13,14) provides a means of studying them by combining electromagnetic interaction with detection techniques that are unique to antimatter(12,15). Here we report the results of a microwave spectroscopy experiment in which we probe the response of antihydrogen over a controlled range of frequencies. The data reveal clear and distinct signatures of two allowed transitions, from which we obtain a direct, magnetic-field-independent measurement of the hyperfine splitting. From a set of trials involving 194 detected atoms, we determine a splitting of 1,420.4 +/- 0.5 megahertz, consistent with expectations for atomic hydrogen at the level of four parts in 10(4). This observation of the detailed behaviour of a quantum transition in an atom of antihydrogen exemplifies tests of fundamental symmetries such as charge-parity-time in antimatter, and the techniques developed here will enable more-precise such tests.
  •  
12.
  • Baker, C. J., et al. (författare)
  • Laser cooling of antihydrogen atoms
  • 2021
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 592:7852, s. 35-42
  • Tidskriftsartikel (refereegranskat)abstract
    • The photon-the quantum excitation of the electromagnetic field-is massless but carries momentum. A photon can therefore exert a force on an object upon collision(1). Slowing the translational motion of atoms and ions by application of such a force(2,3), known as laser cooling, was first demonstrated 40 years ago(4,5). It revolutionized atomic physics over the following decades(6-8), and it is now a workhorse in many fields, including studies on quantum degenerate gases, quantum information, atomic clocks and tests of fundamental physics. However, this technique has not yet been applied to antimatter. Here we demonstrate laser cooling of antihydrogen(9), the antimatter atom consisting of an antiproton and a positron. By exciting the 1S-2P transition in antihydrogen with pulsed, narrow-linewidth, Lyman-alpha laser radiation(10,11), we Doppler-cool a sample of magnetically trapped antihydrogen. Although we apply laser cooling in only one dimension, the trap couples the longitudinal and transverse motions of the anti-atoms, leading to cooling in all three dimensions. We observe a reduction in the median transverse energy by more than an order of magnitude-with a substantial fraction of the anti-atoms attaining submicroelectronvolt transverse kinetic energies. We also report the observation of the laser-driven 1S-2S transition in samples of laser-cooled antihydrogen atoms. The observed spectral line is approximately four times narrower than that obtained without laser cooling. The demonstration of laser cooling and its immediate application has far-reaching implications for antimatter studies. A more localized, denser and colder sample of antihydrogen will drastically improve spectroscopic(11-13) and gravitational(14) studies of antihydrogen in ongoing experiments. Furthermore, the demonstrated ability to manipulate the motion of antimatter atoms by laser light will potentially provide ground-breaking opportunities for future experiments, such as anti-atomic fountains, anti-atom interferometry and the creation of antimatter molecules.
  •  
13.
  • Baker, C. J., et al. (författare)
  • Sympathetic cooling of positrons to cryogenic temperatures for antihydrogen production
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The positron, the antiparticle of the electron, predicted by Dirac in 1931 and discovered by Anderson in 1933, plays a key role in many scientific and everyday endeavours. Notably, the positron is a constituent of antihydrogen, the only long-lived neutral antimatter bound state that can currently be synthesized at low energy, presenting a prominent system for testing fundamental symmetries with high precision. Here, we report on the use of laser cooled Be+ ions to sympathetically cool a large and dense plasma of positrons to directly measured temperatures below 7 K in a Penning trap for antihydrogen synthesis. This will likely herald a significant increase in the amount of antihydrogen available for experimentation, thus facilitating further improvements in studies of fundamental symmetries. Positrons are key to the production of cold antihydrogen. Here the authors report the sympathetic cooling of positrons by interacting them with laser-cooled Be+ ions resulting in a three-fold reduction of the temperature of positrons for antihydrogen synthesis.
  •  
14.
  • Kamp, I., et al. (författare)
  • The formation of planetary systems with SPICA
  • 2021
  • Ingår i: Publications Astronomical Society of Australia. - : Cambridge University Press (CUP). - 1323-3580 .- 1448-6083. ; 38
  • Tidskriftsartikel (refereegranskat)abstract
    • In this era of spatially resolved observations of planet-forming disks with Atacama Large Millimeter Array (ALMA) and large groundbased telescopes such as the Very Large Telescope (VLT), Keck, and Subaru, we still lack statistically relevant information on the quantity and composition of the material that is building the planets, such as the total disk gas mass, the ice content of dust, and the state of water in planetesimals. SPace Infrared telescope for Cosmology and Astrophysics (SPICA) is an infrared space mission concept developed jointly by Japan Aerospace Exploration Agency (JAXA) and European Space Agency (ESA) to address these questions. The key unique capabilities of SPICA that enable this research are (1) the wide spectral coverage 10-220 mu m, (2) the high line detection sensitivity of (1-2) x10(-19)Wm(-2) with R similar to 2 000-5 000 in the far-IR (SAFARI), and 10-20Wm(-2) with R similar to 29 000 in themid-IR (SPICA Mid-infrared Instrument (SMI), spectrally resolving line profiles), (3) the high far-IR continuum sensitivity of 0.45mJy (SAFARI), and (4) the observing efficiency for point source surveys. This paper details how mid- to far-IR infrared spectra will be unique in measuring the gas masses and water/ice content of disks and how these quantities evolve during the planet-forming period. These observations will clarify the crucial transition when disks exhaust their primordial gas and further planet formation requires secondary gas produced from planetesimals. The high spectral resolution mid-IR is also unique for determining the location of the snowline dividing the rocky and icy mass reservoirs within the disk and how the divide evolves during the build-up of planetary systems. Infrared spectroscopy (mid- to far-IR) of key solid-state bands is crucial for assessing whether extensive radial mixing, which is part of our Solar System history, is a general process occurring in most planetary systems and whether extrasolar planetesimals are similar to our Solar System comets/asteroids. We demonstrate that the SPICA mission concept would allow us to achieve the above ambitious science goals through large surveys of several hundred disks within similar to 2.5 months of observing time.
  •  
15.
  • Nakajima, K., et al. (författare)
  • Diagnostic accuracy of an artificial neural network compared with statistical quantitation of myocardial perfusion images: a Japanese multicenter study
  • 2017
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 44:13, s. 2280-2289
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose Artificial neural networks (ANN) might help to diagnose coronary artery disease. This study aimed to determine whether the diagnostic accuracy of an ANN-based diagnostic system and conventional quantitation are comparable. Methods The ANN was trained to classify potentially abnormal areas as true or false based on the nuclear cardiology expert interpretation of 1001 gated stress/rest Tc-99m-MIBI images at 12 hospitals. The diagnostic accuracy of the ANN was compared with 364 expert interpretations that served as the gold standard of abnormality for the validation study. Conventional summed stress/rest/difference scores (SSS/SRS/SDS) were calculated and compared with receiver operating characteristics (ROC) analysis. Results The ANN generated a better area under the ROC curves (AUC) than SSS (0.92 vs. 0.82, p < 0.0001), indicating better identification of stress defects. The ANN also generated a better AUC than SDS (0.90 vs. 0.75, p < 0.0001) for stress-induced ischemia. The AUC for patients with old myocardial infarction based on rest defects was 0.97 (0.91 for SRS, p = 0.0061), and that for patients with and without a history of revascularization based on stress defects was 0.94 and 0.90 (p = 0.0055 and p < 0.0001 vs. SSS, respectively). The SSS/SRS/SDS steeply increased when ANN values (probability of abnormality) were > 0.80. Conclusion The ANN was diagnostically accurate in various clinical settings, including that of patients with previous myocardial infarction and coronary revascularization. The ANN could help to diagnose coronary artery disease.
  •  
16.
  • Rousseau-Nepton, L., et al. (författare)
  • SIGNALS : I. Survey description
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 489:4, s. 5530-5546
  • Tidskriftsartikel (refereegranskat)abstract
    • SIGNALS, the Star formation, Ionized Gas, and Nebular Abundances Legacy Survey, is a large observing programme designed to investigate massive star formation and HII regions in a sample of local extended galaxies. The programme will use the imaging Fourier transform spectrograph SITELLE at the Canada-France-Hawaii Telescope. Over 355 h (54.7 nights) have been allocated beginning in fall 2018 for eight consecutive semesters. Once completed, SIGNALS will provide a statistically reliable laboratory to investigate massive star formation, including over 50 000 resolved HII regions: the largest, most complete, and homogeneous data base of spectroscopically and spatially resolved extragalactic HII regions ever assembled. For each field observed, three datacubes covering the spectral bands of the filters SN1 (363386 nm), SN2 (482-513 nm), and SN3 (647-685 nm) are gathered. The spectral resolution selected for each spectral band is 1000, 1000, and 5000, respectively. As defined, the project sample will facilitate the study of small-scale nebular physics and many other phenomena linked to star formation at a mean spatial resolution of similar to 20 pc. This survey also has considerable legacy value for additional topics, including planetary nebulae, diffuse ionized gas, and supernova remnants. The purpose of this paper is to present a general outlook of the survey, notably the observing strategy, galaxy sample, and science requirements.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-16 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy