SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mononen Mika E.) "

Sökning: WFRF:(Mononen Mika E.)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • van de Vegte, Yordi, et al. (författare)
  • Genetic insights into resting heart rate and its role in cardiovascular disease
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetics and clinical consequences of resting heart rate (RHR) remain incompletely understood. Here, the authors discover new genetic variants associated with RHR and find that higher genetically predicted RHR decreases risk of atrial fibrillation and ischemic stroke. Resting heart rate is associated with cardiovascular diseases and mortality in observational and Mendelian randomization studies. The aims of this study are to extend the number of resting heart rate associated genetic variants and to obtain further insights in resting heart rate biology and its clinical consequences. A genome-wide meta-analysis of 100 studies in up to 835,465 individuals reveals 493 independent genetic variants in 352 loci, including 68 genetic variants outside previously identified resting heart rate associated loci. We prioritize 670 genes and in silico annotations point to their enrichment in cardiomyocytes and provide insights in their ECG signature. Two-sample Mendelian randomization analyses indicate that higher genetically predicted resting heart rate increases risk of dilated cardiomyopathy, but decreases risk of developing atrial fibrillation, ischemic stroke, and cardio-embolic stroke. We do not find evidence for a linear or non-linear genetic association between resting heart rate and all-cause mortality in contrast to our previous Mendelian randomization study. Systematic alteration of key differences between the current and previous Mendelian randomization study indicates that the most likely cause of the discrepancy between these studies arises from false positive findings in previous one-sample MR analyses caused by weak-instrument bias at lower P-value thresholds. The results extend our understanding of resting heart rate biology and give additional insights in its role in cardiovascular disease development.
  •  
2.
  • Kato, Norihiro, et al. (författare)
  • Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation
  • 2015
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 47:11, s. 1282-1293
  • Tidskriftsartikel (refereegranskat)abstract
    • We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 × 10−11 to 5.0 × 10−21). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 × 10−6). Our results provide new evidence for the role of DNA methylation in blood pressure regulation.
  •  
3.
  • Wuttke, Matthias, et al. (författare)
  • A catalog of genetic loci associated with kidney function from analyses of a million individuals
  • 2019
  • Ingår i: Nature Genetics. - : NATURE PUBLISHING GROUP. - 1061-4036 .- 1546-1718. ; 51:6, s. 957-972
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through transancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these,147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.
  •  
4.
  • Ntalla, Ioanna, et al. (författare)
  • Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N=293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease. On the electrocardiogram, the PR interval reflects conduction from the atria to ventricles and also serves as risk indicator of cardiovascular morbidity and mortality. Here, the authors perform genome-wide meta-analyses for PR interval in multiple ancestries and identify 141 previously unreported genetic loci.
  •  
5.
  • Young, William J., et al. (författare)
  • Genetic analyses of the electrocardiographic QT interval and its components identify additional loci and pathways
  • 2022
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • The QT interval is a heritable electrocardiographic measure associated with arrhythmia risk when prolonged. Here, the authors used a series of genetic analyses to identify genetic loci, pathways, therapeutic targets, and relationships with cardiovascular disease. The QT interval is an electrocardiographic measure representing the sum of ventricular depolarization and repolarization, estimated by QRS duration and JT interval, respectively. QT interval abnormalities are associated with potentially fatal ventricular arrhythmia. Using genome-wide multi-ancestry analyses (>250,000 individuals) we identify 177, 156 and 121 independent loci for QT, JT and QRS, respectively, including a male-specific X-chromosome locus. Using gene-based rare-variant methods, we identify associations with Mendelian disease genes. Enrichments are observed in established pathways for QT and JT, and previously unreported genes indicated in insulin-receptor signalling and cardiac energy metabolism. In contrast for QRS, connective tissue components and processes for cell growth and extracellular matrix interactions are significantly enriched. We demonstrate polygenic risk score associations with atrial fibrillation, conduction disease and sudden cardiac death. Prioritization of druggable genes highlight potential therapeutic targets for arrhythmia. Together, these results substantially advance our understanding of the genetic architecture of ventricular depolarization and repolarization.
  •  
6.
  • Gorski, Mathias, et al. (författare)
  • Genetic loci and prioritization of genes for kidney function decline derived from a meta-analysis of 62 longitudinal genome-wide association studies
  • 2022
  • Ingår i: Kidney International. - : Elsevier. - 0085-2538 .- 1523-1755. ; 102:3, s. 624-639
  • Tidskriftsartikel (refereegranskat)abstract
    • Estimated glomerular filtration rate (eGFR) reflects kidney function. Progressive eGFR-decline can lead to kidney failure, necessitating dialysis or transplantation. Hundreds of loci from genome-wide association studies (GWAS) for eGFR help explain population cross section variability. Since the contribution of these or other loci to eGFR-decline remains largely unknown, we derived GWAS for annual eGFR-decline and meta-analyzed 62 longitudinal studies with eGFR assessed twice over time in all 343,339 individuals and in high-risk groups. We also explored different covariate adjustment. Twelve genomewide significant independent variants for eGFR-decline unadjusted or adjusted for eGFR- baseline (11 novel, one known for this phenotype), including nine variants robustly associated across models were identified. All loci for eGFR-decline were known for cross-sectional eGFR and thus distinguished a subgroup of eGFR loci. Seven of the nine variants showed variant- by-age interaction on eGFR cross section (further about 350,000 individuals), which linked genetic associations for eGFR-decline with agedependency of genetic cross- section associations. Clinically important were two to four-fold greater genetic effects on eGFR-decline in high-risk subgroups. Five variants associated also with chronic kidney disease progression mapped to genes with functional in- silico evidence (UMOD, SPATA7, GALNTL5, TPPP). An unfavorable versus favorable nine-variant genetic profile showed increased risk odds ratios of 1.35 for kidney failure (95% confidence intervals 1.03- 1.77) and 1.27 for acute kidney injury (95% confidence intervals 1.08-1.50) in over 2000 cases each, with matched controls). Thus, we provide a large data resource, genetic loci, and prioritized genes for kidney function decline, which help inform drug development pipelines revealing important insights into the age-dependency of kidney function genetics.
  •  
7.
  • Gorski, Mathias, et al. (författare)
  • Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline
  • 2021
  • Ingår i: Kidney International. - : Elsevier. - 0085-2538 .- 1523-1755. ; 99:4, s. 926-939
  • Tidskriftsartikel (refereegranskat)abstract
    • Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m2/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25% or more and eGFRcrea under 60 mL/min/1.73m2 at follow-up among those with eGFRcrea 60 mL/min/1.73m2 or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or LARP4B. Individuals at high compared to those at low genetic risk (8-14 vs 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.
  •  
8.
  • Jahangir, Sana, et al. (författare)
  • Sensitivity of simulated knee joint mechanics to selected human and bovine fibril-reinforced poroelastic material properties
  • 2023
  • Ingår i: Journal of Biomechanics. - 0021-9290. ; 160
  • Tidskriftsartikel (refereegranskat)abstract
    • Fibril-reinforced poroviscoelastic material models are considered state-of-the-art in modeling articular cartilage biomechanics. Yet, cartilage material parameters are often based on bovine tissue properties in computational knee joint models, although bovine properties are distinctly different from those of humans. Thus, we aimed to investigate how cartilage mechanical responses are affected in the knee joint model during walking when fibril-reinforced poroviscoelastic properties of cartilage are based on human data instead of bovine. We constructed a finite element knee joint model in which tibial and femoral cartilages were modeled as fibril-reinforced poroviscoelastic material using either human or bovine data. Joint loading was based on subject-specific gait data. The resulting mechanical responses of knee cartilage were compared between the knee joint models with human or bovine fibril-reinforced poroviscoelastic cartilage properties. Furthermore, we conducted a sensitivity analysis to determine which fibril-reinforced poroviscoelastic material parameters have the greatest impact on cartilage mechanical responses in the knee joint during walking. In general, bovine cartilage properties yielded greater maximum principal stresses and fluid pressures (both up to 30%) when compared to the human cartilage properties during the loading response in both femoral and tibial cartilage sites. Cartilage mechanical responses were very sensitive to the collagen fibril-related material parameter variations during walking while they were unresponsive to proteoglycan matrix or fluid flow-related material parameter variations. Taken together, human cartilage material properties should be accounted for when the goal is to compare absolute mechanical responses of knee joint cartilage as bovine material parameters lead to substantially different cartilage mechanical responses.
  •  
9.
  • Mononen, Mika E, et al. (författare)
  • A Novel Method to Simulate the Progression of Collagen Degeneration of Cartilage in the Knee: Data from the Osteoarthritis Initiative.
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a novel algorithm combined with computational modeling to simulate the development of knee osteoarthritis. The degeneration algorithm was based on excessive and cumulatively accumulated stresses within knee joint cartilage during physiological gait loading. In the algorithm, the collagen network stiffness of cartilage was reduced iteratively if excessive maximum principal stresses were observed. The developed algorithm was tested and validated against experimental baseline and 4-year follow-up Kellgren-Lawrence grades, indicating different levels of cartilage degeneration at the tibiofemoral contact region. Test groups consisted of normal weight and obese subjects with the same gender and similar age and height without osteoarthritic changes. The algorithm accurately simulated cartilage degeneration as compared to the Kellgren-Lawrence findings in the subject group with excess weight, while the healthy subject group's joint remained intact. Furthermore, the developed algorithm followed the experimentally found trend of cartilage degeneration in the obese group (R(2) = 0.95, p < 0.05; experiments vs. model), in which the rapid degeneration immediately after initiation of osteoarthritis (0-2 years, p < 0.001) was followed by a slow or negligible degeneration (2-4 years, p > 0.05). The proposed algorithm revealed a great potential to objectively simulate the progression of knee osteoarthritis.
  •  
10.
  • Mononen, Mika E., et al. (författare)
  • New algorithm for simulation of proteoglycan loss and collagen degeneration in the knee joint : Data from the osteoarthritis initiative
  • 2018
  • Ingår i: Journal of Orthopaedic Research. - : Wiley. - 0736-0266. ; 36:6, s. 1673-1683
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoarthritis is a harmful joint disease but prediction of disease progression is problematic. Currently, there is only one modeling framework which can be applied to predict the progression of knee osteoarthritis but it only considers degenerative changes in the collagen fibril network. Here, we have developed the framework further by considering all of the major tissue changes (proteoglycan content, fluid flow, and collagen fibril network) occurring in osteoarthritis. While excessive levels of tissue stresses controlled degeneration of the collagen fibril network, excessive levels of tissue strains controlled the decrease in proteoglycan content and the increase in permeability. We created four knee joint models with increasing degrees of complexity based on the depth-wise composition. Models were tested for normal and abnormal, physiologically relevant, loading conditions in the knee. Finally, the predicted depth-wise compositional changes from each model were compared against experimentally observed compositional changes in vitro. The model incorporating the typical depth-wise composition of cartilage produced the best match with experimental observations. Consistent with earlier in vitro experiments, this model simulated the greatest proteoglycan depletion in the superficial and middle zones, while the collagen fibril degeneration was located mostly in the superficial zone. The presented algorithm can be used for predicting simultaneous collagen degeneration and proteoglycan loss during the development of knee osteoarthritis.
  •  
11.
  • Paz, Alexander, et al. (författare)
  • A novel knee joint model in FEBio with inhomogeneous fibril-reinforced biphasic cartilage simulating tissue mechanical responses during gait : data from the osteoarthritis initiative
  • 2023
  • Ingår i: Computer Methods in Biomechanics and Biomedical Engineering. - : Informa UK Limited. - 1025-5842 .- 1476-8259. ; 26:11, s. 1353-1367
  • Tidskriftsartikel (refereegranskat)abstract
    • We developed a novel knee joint model in FEBio to simulate walking. Knee cartilage was modeled using a fibril-reinforced biphasic (FRB) formulation with depth-wise collagen architecture and split-lines to account for cartilage structure. Under axial compression, the knee model with FRB cartilage yielded contact pressures, similar to reported experimental data. Furthermore, gait analysis with FRB cartilage simulated spatial and temporal trends in cartilage fluid pressures, stresses, and strains, comparable to those of a fibril-reinforced poroviscoelastic (FRPVE) material in Abaqus. This knee joint model in FEBio could be used for further studies of knee disorders using physiologically relevant loading.
  •  
12.
  • Paz, Alexander, et al. (författare)
  • Expediting finite element analyses for subject‐specific studies of knee osteoarthritis : A literature review
  • 2021
  • Ingår i: Applied Sciences (Switzerland). - : MDPI AG. - 2076-3417. ; 11:23
  • Forskningsöversikt (refereegranskat)abstract
    • Osteoarthritis (OA) is a degenerative disease that affects the synovial joints, especially the knee joint, diminishing the ability of patients to perform daily physical activities. Unfortunately, there is no cure for this nearly irreversible musculoskeletal disorder. Nowadays, many researchers aim for in silico‐based methods to simulate personalized risks for the onset and progression of OA and evaluate the effects of different conservative preventative actions. Finite element analysis (FEA) has been considered a promising method to be developed for knee OA management. The FEA pipe-line consists of three well‐established phases: pre‐processing, processing, and post‐processing. Cur-rently, these phases are time‐consuming, making the FEA workflow cumbersome for the clinical environment. Hence, in this narrative review, we overviewed present‐day trends towards clinical methods for subject‐specific knee OA studies utilizing FEA. We reviewed studies focused on understanding mechanisms that initiate knee OA and expediting the FEA workflow applied to the whole‐organ level. Based on the current trends we observed, we believe that forthcoming knee FEAs will provide nearly real‐time predictions for the personalized risk of developing knee OA. These analyses will integrate subject‐specific geometries, loading conditions, and estimations of local tissue mechanical properties. This will be achieved by combining state‐of‐the‐art FEA workflows with automated approaches aided by machine learning techniques.
  •  
13.
  • Simkheada, Tulashi, et al. (författare)
  • Comparison of constitutive models for meniscus and their effect on the knee joint biomechanics during gait
  • 2023
  • Ingår i: Computer Methods in Biomechanics and Biomedical Engineering. - : Informa UK Limited. - 1025-5842 .- 1476-8259. ; 26:16, s. 2008-2021
  • Tidskriftsartikel (refereegranskat)abstract
    • Mechanical behavior of meniscus can be modeled using constitutive material models of varying complexity, such as isotropic elastic or fibril reinforced poroelastic (FRPE). However, the FRPE material is complex to implement, computationally demanding in 3D geometries, and simulation is time-consuming. Hence, we aimed to quantify the most suitable and efficient constitutive model of meniscus for simulation of cartilage responses in the knee joint during walking. We showed that simpler constitutive material models can reproduce similar cartilage responses to a knee model with the FRPE meniscus, but only knee models that consider orthotropic elastic meniscus can also reproduce meniscus responses adequately.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13
Typ av publikation
tidskriftsartikel (12)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (13)
Författare/redaktör
Verweij, Niek (7)
Nikus, Kjell (7)
Meitinger, Thomas (7)
van der Harst, Pim (7)
Raitakari, Olli T (6)
Rotter, Jerome I. (6)
visa fler...
Waldenberger, Melani ... (6)
Mononen, Nina (6)
Lind, Lars (5)
Strauch, Konstantin (5)
Lehtimaki, Terho (5)
Loos, Ruth J F (5)
Psaty, Bruce M (5)
Boerwinkle, Eric (5)
Lieb, Wolfgang (5)
Pattaro, Cristian (5)
Cheng, Ching-Yu (5)
Wong, Tien Yin (5)
Kahonen, Mika (5)
Snieder, Harold (5)
Taylor, Kent D. (5)
Lyytikainen, Leo-Pek ... (5)
Cocca, Massimiliano (5)
Ahluwalia, Tarunveer ... (4)
Ikram, M. Arfan (4)
Stefansson, Kari (4)
Gieger, Christian (4)
Padmanabhan, Sandosh (4)
Porteous, David J (4)
Hayward, Caroline (4)
Mueller-Nurasyid, Ma ... (4)
Hwang, Shih-Jen (4)
Kleber, Marcus E. (4)
Penninx, Brenda W J ... (4)
Isaacs, Aaron (4)
Franke, Andre (4)
Feitosa, Mary F. (4)
Morris, Andrew P. (4)
Milaneschi, Yuri (4)
Fuchsberger, Christi ... (4)
Jukema, J. Wouter (4)
Gansevoort, Ron T. (4)
Bottinger, Erwin P. (4)
Rice, Kenneth M. (4)
Trompet, Stella (4)
Nauck, Matthias (4)
Sveinbjornsson, Garð ... (4)
Khor, Chiea Chuen (4)
Nutile, Teresa (4)
Concas, Maria Pina (4)
visa färre...
Lärosäte
Lunds universitet (12)
Uppsala universitet (6)
Karolinska Institutet (3)
Högskolan Dalarna (2)
Göteborgs universitet (1)
Umeå universitet (1)
Språk
Engelska (13)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (11)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy