SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Morling Niels) "

Sökning: WFRF:(Morling Niels)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ballantyne, Kaye N., et al. (författare)
  • Toward Male Individualization with Rapidly Mutating Y-Chromosomal Short Tandem Repeats
  • 2014
  • Ingår i: Human Mutation. - : John Wiley & Sons. - 1059-7794 .- 1098-1004. ; 35:8, s. 1021-1032
  • Tidskriftsartikel (refereegranskat)abstract
    • Relevant for various areas of human genetics, Y-chromosomal short tandem repeats (Y-STRs) are commonly used for testing close paternal relationships among individuals and populations, and for male lineage identification. However, even the widely used 17-loci Yfiler set cannot resolve individuals and populations completely. Here, 52 centers generated quality-controlled data of 13 rapidly mutating (RM) Y-STRs in 14,644 related and unrelated males from 111 worldwide populations. Strikingly, greater than99% of the 12,272 unrelated males were completely individualized. Haplotype diversity was extremely high (global: 0.9999985, regional: 0.99836-0.9999988). Haplotype sharing between populations was almost absent except for six (0.05%) of the 12,156 haplotypes. Haplotype sharing within populations was generally rare (0.8% nonunique haplotypes), significantly lower in urban (0.9%) than rural (2.1%) and highest in endogamous groups (14.3%). Analysis of molecular variance revealed 99.98% of variation within populations, 0.018% among populations within groups, and 0.002% among groups. Of the 2,372 newly and 156 previously typed male relative pairs, 29% were differentiated including 27% of the 2,378 father-son pairs. Relative to Yfiler, haplotype diversity was increased in 86% of the populations tested and overall male relative differentiation was raised by 23.5%. Our study demonstrates the value of RMY-STRs in identifying and separating unrelated and related males and provides a reference database.
  •  
2.
  • Chaitanya, Lakshmi, et al. (författare)
  • Collaborative EDNAP exercise on the IrisPlex system for DNA based prediction of human eye colour
  • 2014
  • Ingår i: Forensic Science International. - : Elsevier. - 1872-4973 .- 1878-0326. ; 11, s. 241-251
  • Tidskriftsartikel (refereegranskat)abstract
    • The IrisPlex system is a DNA-based test system for the prediction of human eye colour from biological samples and consists of a single forensically validated multiplex genotyping assay together with a statistical prediction model that is based on genotypes and phenotypes from thousands of individuals. IrisPlex predicts blue and brown human eye colour with, on average, >94% precision accuracy using six of the currently most eye colour informative single nucleotide polymorphisms (HERC2 rs12913832, OCA2 rs1800407, SLC24A4 rs12896399, SLC45A2 (MATP) rs16891982, TYR rs1393350, and IRF4 rs12203592) according to a previous study, while the accuracy in predicting non-blue and non-brown eye colours is considerably lower. In an effort to vigorously assess the IrisPlex system at the international level, testing was performed by 21 laboratories in the context of a collaborative exercise divided into three tasks and organised by the European DNA Profiling (EDNAP) Group of the International Society of Forensic Genetics (ISFG). Task 1 involved the assessment of 10 blood and saliva samples provided on FTA cards by the organising laboratory together with eye colour phenotypes; 99.4% of the genotypes were correctly reported and 99% of the eye colour phenotypes were correctly predicted. Task 2 involved the assessment of 5 DNA samples extracted by the host laboratory from simulated casework samples, artificially degraded, and provided to the participants in varying DNA concentrations. For this task, 98.7% of the genotypes were correctly determined and 96.2% of eye colour phenotypes were correctly inferred. For Tasks 1 and 2 together, 99.2% (1875) of the 1890 genotypes were correctly generated and of the 15 (0.8%) incorrect genotype calls, only 2 (0.1%) resulted in incorrect eye colour phenotypes. The voluntary Task 3 involved participants choosing their own test subjects for IrisPlex genotyping and eye colour phenotype inference, while eye photographs were provided to the organising laboratory and judged; 96% of the eye colour phenotypes were inferred correctly across 100 samples and 19 laboratories. The high success rates in genotyping and eye colour phenotyping clearly demonstrate the reproducibility and the robustness of the IrisPlex assay as well as the accuracy of the IrisPlex model to predict blue and brown eye colour from DNA. Additionally, this study demonstrates the ease with which the IrisPlex system is implementable and applicable across forensic laboratories around the world with varying pre-existing experiences.
  •  
3.
  • Edlund, Hanna, 1977- (författare)
  • Sensitive Identification Tools in Forensic DNA Analysis
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • DNA as forensic evidence is valuable in criminal investigations. Implementation of new, sensitive and fast technologies is an important part of forensic genetic research. This thesis aims to evaluate new sensitive methods to apply in forensic DNA analysis including analysis of old skeletal remains. In Paper I and II, two novel systems for analysis of STRs, based on the Pyrosequencing technology, are presented. In Paper I, Y chromosomal STRs are analysed. Markers on the male specific Y chromosome are especially useful in analysis of DNA mixtures. In Paper II, ten autosomal STRs are genotyped. The systems are based on sequencing of STR loci instead of size determination of STR fragments as in routine analysis. This provides a higher resolution since sequence variants within the repeats can be detected. Determination of alleles is based on a termination recognition base. This is the base in the template strand that is excluded from the dispensation order in the sequencing of the complementary strand and therefore terminates the reaction. Furthermore, skeletal remains are often difficult to analyse, due to damaging effects from the surrounding environment on the DNA and the high risk of exogenous contamination. Analysis of mitochondrial DNA is useful on degraded samples and in Paper III, mtDNA analysis of 700 years old skeletal remains is performed to investigate a maternal relationship. The quantity and quality of DNA are essential in forensic genetics. In Paper IV the efficiency of DNA isolation is investigated. Soaking skeletal remains in bleach is efficient for decontamination but result in a lower DNA yield, especially on pulverised skull samples. In conclusion, this thesis presents novel sequencing systems for accurate and fast analysis of STR loci that can be useful in evaluation of new loci and database assembly as well as the utility of mtDNA in forensic genetics.  
  •  
4.
  • Lembring, Maria (författare)
  • Application of Mitochondrial DNA Analysis in Contemporary and Historical Samples
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The mitochondrion is a tiny organelle that is the power supplier of the cell and vital to the functioning of the body organs. Additionally it contains a small circular genome of about 16 kb, present in many copies which makes the mitochondrial DNA more viable than nuclear DNA. Mitochondrial DNA is also maternally inherited and thus provides a direct link to maternal relatives. These two properties are of particular use for forensic samples, which only contain limited or degraded amounts of DNA, and for historical samples (ancient DNA). This thesis presents work on the mitochondrial DNA in the hypervariable regions (HV) I and II, in both contemporary and historical samples. Forensic genetics makes use of mitochondrial DNA analysis in court as circumstantial evidence, and population databases are used for the calculation of evidence value. Population samples (299) across Sweden have been analysed in order to enrich the EDNAP mtDNA database (EMPOP) (paper I). The application of mitochondrial DNA analysis allowed for analysis of historical skeletal remains: Copernicus, 1473-1543 (paper II), Karin Göring, 1888-1931 (paper III) and Medieval bones, 880-1000 AD, from a mass grave found in Sigtuna, Sweden (paper IV). The thesis also includes analyses of bones and teeth from the shipwrecked crew of the Vasa warship, 1628, samples from the Vasa museum, Stockholm, Sweden (paper V). Overall, the varying age of the samples and the different conservation environments (soil and water) accounted for variations in quality, but still allowed for successful DNA analysis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy