SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Movérare Skrtic Sofia) "

Sökning: WFRF:(Movérare Skrtic Sofia)

  • Resultat 1-25 av 82
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • ALi, Kassem, et al. (författare)
  • Toll-like receptor induced inflammation causes local bone formation
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • It is well established that inflammatory processes in the vicinity of bone often induce osteoclast formation and bone resorption. Effects on bone formation by inflammatory processes are much less studied and available information is partly contradictory. In the present study, we have assessed the effect on bone formation by locally induced inflammation. LPS from Porphyromonas gingivalis and Pam2, used as Toll-like receptor (TLR) 2 agonists, and flagellin from Salmonella typhimurium, used as TLR5 agonist, were injected subcutaneously on the top of mouse skull bones. After 1-5 days, the calvarial bones were dissected and processed either for histological or gene expression analyses. Femur was dissected for analysis with microCT and histology. At day 5, all three agonists induced bone formation on periosteal and endosteal sites, as well as in the bone marrow compartment of the calvaria. This response was seen both in close vicinity to, but also apart from, osteoclasts and bone resorption cavities. In areas close to new bone formation, abundance of proliferating cells was observed as assessed by Ki67 labelling. Gene expression analyses showed that Pam2 treatment resulted in increased mRNA expression at day 5 of genes encoding bone matrix proteins, alkaline phosphatase and of the osteoblastic transcription factors Runx2 and osterix. Robust Runx2 protein was observed in osteoblasts in areas with new bone formation. Pam2 treatment also increased the mRNA expression of cytokines in the IL-6 family, as well as of their cognate receptors and common signaling transduction subunit gp130. At day 5, the mRNA expression of Bmp2, Bmp4, Tgfb1, Lrp5, Lrp6 and Wnt7b was increased, whereas Sost was decreased. In the femur, excessive osteoclast formation and trabecular bone loss was found at day 5, but new bone formation was not observed. In conclusion, these data show that inflammatory processes not only induce osteoclastogenesis but also have the capacity to activate osteoblasts and stimulate new bone formation distinct from bone remodeling sites. Stimulation of inflammation- induced new bone formation may be due to enhanced gp130 signaling. Osteoblast activation in the inflammatory processes may also involve the BMP and WNT signaling systems.
  •  
2.
  • Andersson, Annica, 1983, et al. (författare)
  • Roles of activating functions 1 and 2 of estrogen receptor α in lymphopoiesis.
  • 2018
  • Ingår i: The Journal of endocrinology. - 1479-6805. ; 236:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Apart from the role of sex steroids in reproduction, sex steroids are also important regulators of the immune system. 17β-estradiol (E2) represses T and B cell development, but augments B cell function, possibly explaining the different nature of immune responses in men and women. Both E2 and selective estrogen receptors modulators (SERM) act via estrogen receptors (ER). Activating functions (AF)-1 and 2 of the ER bind to coregulators and thus influence target gene transcription and subsequent cellular response to ER activation. The importance of ERαAF-1 and AF-2 in the immunomodulatory effects of E2/SERM has previously not been reported. Thus, detailed studies of T and B lymphopoiesis were performed in ovariectomized E2-, lasofoxifene- or raloxifene-treated mice lacking either AF-1 or AF-2 domains of ERα, and their wild-type littermate controls. Immune cell phenotypes were analyzed with flow cytometry. All E2 and SERM-mediated inhibitory effects on thymus cellularity and thymic T cell development were clearly dependent on both ERαAFs. Interestingly, divergent roles of ERαAF-1 and ERαAF-2 in E2 and SERM-mediated modulation of bone marrow B lymphopoiesis were found. In contrast to E2, effects of lasofoxifene on early B cells did not require functional ERαAF-2, while ERαAF-1 was indispensable. Raloxifene reduced early B cells partly independent of both ERαAF-1 and ERαAF-2. Results from this study increase the understanding of the impact of ER modulation on the immune system, which can be useful in the clarification of the molecular actions of SERMs and in the development of new SERM.
  •  
3.
  • Andersson, Niklas, 1970, et al. (författare)
  • A gene expression fingerprint of mouse stomach ECL cells.
  • 2005
  • Ingår i: Biochemical and biophysical research communications. - : Elsevier BV. - 0006-291X .- 1090-2104. ; 332:2, s. 404-10
  • Tidskriftsartikel (refereegranskat)abstract
    • Many of the endocrine cells in the stomach are poorly characterized with respect to physiological significance. In some cases, the anticipated hormone has not yet been identified. Global gene expression analysis of mouse stomach was performed in an attempt to identify the ECL-cell peptide/protein. Specific functional activation (omeprazole-induced hypergastrinaemia) was used as a tool to generate a gene expression fingerprint of the ECL cells. The proposed fingerprint includes 14 genes, among them six are known to be expressed by ECL cells (=positive controls), and some novel ones, which are likely to be ECL-cell-related. The known ECL-cell-related genes are those encoding histidine decarboxylase, chromogranin A and B, vesicular monoamine transporter 2, synaptophysin, and the cholecystokinin-B receptor. In addition, the fingerprint included five genes, which might be involved in the process of secretion and three ESTs with unknown function. Interestingly, parathyroid hormone-like hormone (Pthlh) was identified as a candidate ECL-cell peptide hormone.
  •  
4.
  • Andersson, Niklas, 1970, et al. (författare)
  • Investigation of central versus peripheral effects of estradiol in ovariectomized mice
  • 2005
  • Ingår i: J Endocrinol. - : Bioscientifica. - 0022-0795 .- 1479-6805. ; 187:2, s. 303-9
  • Tidskriftsartikel (refereegranskat)abstract
    • It is generally believed that estrogens exert their bone sparing effects directly on the cells within the bone compartment. The aim of the present study was to investigate if central mechanisms might be involved in the bone sparing effect of estrogens. The dose-response of central (i.c.v) 17beta-estradiol (E2) administration was compared with that of peripheral (s.c.) administration in ovariectomized (ovx) mice. The dose-response curves for central and peripheral E2 administration did not differ for any of the studied estrogen-responsive tissues, indicating that these effects were mainly peripheral. In addition, ovx mice were treated with E2 and/or the peripheral estrogen receptor antagonist ICI 182,780. ICI 182,780 attenuated most of the estrogenic response regarding uterus weight, retroperitoneal fat weight, cortical BMC and trabecular bone mineral content (P<0.05). These findings support the notion that the primary target tissue that mediates the effect of E2 on bone is peripheral and not central.
  •  
5.
  • Brommage, Robert, et al. (författare)
  • NOTUM inhibition increases endocortical bone formation and bone strength
  • 2019
  • Ingår i: Bone Research. - : Springer Science and Business Media LLC. - 2095-4700 .- 2095-6231. ; 7:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The disability, mortality and costs caused by non-vertebral osteoporotic fractures are enormous. Existing osteoporosis therapies are highly effective at reducing vertebral but not non-vertebral fractures. Cortical bone is a major determinant of non-vertebral bone strength. To identify novel osteoporosis drug targets, we phenotyped cortical bone of 3 366 viable mouse strains with global knockouts of druggable genes. Cortical bone thickness was substantially elevated in Notum(-/-) mice. NOTUM is a secreted WNT lipase and we observed high NOTUM expression in cortical bone and osteoblasts but not osteoclasts. Three orally active small molecules and a neutralizing antibody inhibiting NOTUM lipase activity were developed. They increased cortical bone thickness and strength at multiple skeletal sites in both gonadal intact and ovariectomized rodents by stimulating endocortical bone formation. Thus, inhibition of NOTUM activity is a potential novel anabolic therapy for strengthening cortical bone and preventing non-vertebral fractures.
  •  
6.
  • Börjesson, Anna E, et al. (författare)
  • Roles of transactivating functions 1 and 2 of estrogen receptor-alpha in bone.
  • 2011
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 108:15, s. 6288-6293
  • Tidskriftsartikel (refereegranskat)abstract
    • The bone-sparing effect of estrogen is primarily mediated via estrogen receptor-α (ERα), which stimulates target gene transcription through two activation functions (AFs), AF-1 in the N-terminal and AF-2 in the ligand binding domain. To evaluate the role of ERα AF-1 and ERα AF-2 for the effects of estrogen in bone in vivo, we analyzed mouse models lacking the entire ERα protein (ERα(-/-)), ERα AF-1 (ERαAF-1(0)), or ERα AF-2 (ERαAF-2(0)). Estradiol (E2) treatment increased the amount of both trabecular and cortical bone in ovariectomized (OVX) WT mice. Neither the trabecular nor the cortical bone responded to E2 treatment in OVX ERα(-/-) or OVX ERαAF-2(0) mice. OVX ERαAF-1(0) mice displayed a normal E2 response in cortical bone but no E2 response in trabecular bone. Although E2 treatment increased the uterine and liver weights and reduced the thymus weight in OVX WT mice, no effect was seen on these parameters in OVX ERα(-/-) or OVX ERαAF-2(0) mice. The effect of E2 in OVX ERαAF-1(0) mice was tissue-dependent, with no or weak E2 response on thymus and uterine weights but a normal response on liver weight. In conclusion, ERα AF-2 is required for the estrogenic effects on all parameters evaluated, whereas the role of ERα AF-1 is tissue-specific, with a crucial role in trabecular bone and uterus but not cortical bone. Selective ER modulators stimulating ERα with minimal activation of ERα AF-1 could retain beneficial actions in cortical bone, constituting 80% of the skeleton, while minimizing effects on reproductive organs.
  •  
7.
  • Börjesson, Anna E, et al. (författare)
  • SERMs have substance-specific effects on bone, and these effects are mediated via ER alpha AF-1 in female mice
  • 2016
  • Ingår i: American Journal of Physiology-Endocrinology and Metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 310:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The bone-sparing effect of estrogens is mediated primarily via estrogen receptor (ER)alpha, which stimulates gene transcription through activation function (AF)-1 and AF-2. The role of ER alpha AF-1 for the estradiol (E-2) effects is tissue specific. The selective ER modulators (SERMs) raloxifene (Ral), lasofoxifene (Las), and bazedoxifene (Bza) can be used to treat postmenopausal osteoporosis. They all reduce the risk for vertebral fractures, whereas Las and partly Bza, but not Ral, reduce the risk for nonvertebral fractures. Here, we have compared the tissue specificity of Ral, Las, and Bza and evaluated the role of ER alpha AF-1 for the effects of these SERMs, with an emphasis on bone parameters. We treated ovariectomized (OVX) wild-type (WT) mice and OVX mice lacking ER alpha AF-1 (ER alpha AF-1(0)) with E-2, Ral, Las, or Bza. All three SERMs increased trabecular bone mass in the axial skeleton. In the appendicular skeleton, only Las increased the trabecular bone volume/tissue volume and trabecular number, whereas both Ral and Las increased the cortical bone thickness and strength. However, Ral also increased cortical porosity. The three SERMs had only a minor effect on uterine weight. Notably, all evaluated effects of these SERMs were absent in ovx ER alpha AF-1(0) mice. In conclusion, all SERMs had similar effects on axial bone mass. However, the SERMs had slightly different effects on the appendicular skeleton since only Las increased the trabecular bone mass and only Ral increased the cortical porosity. Importantly, all SERM effects require a functional ER alpha AF-1 in female mice. These results could lead to development of more specific treatments for osteoporosis.
  •  
8.
  • Börjesson, Anna E, et al. (författare)
  • The role of estrogen receptor-alpha in growth plate cartilage for longitudinal bone growth.
  • 2010
  • Ingår i: Journal of bone and mineral research. - : Wiley. - 1523-4681 .- 0884-0431. ; 25:12, s. 2414-24
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogens enhance skeletal growth during early sexual maturation while high estradiol levels during late puberty result in growth plate fusion in humans. Although the growth plates do not fuse directly after sexual maturation in rodents, a reduction in growth plate height is seen by treatment with a high dose of estradiol. It is unknown whether the effects of estrogens on skeletal growth are mediated directly via estrogen receptors (ERs) in growth plate cartilage and/or indirectly via other mechanisms such as the GH/IGF-I axis. To determine the role of ERalpha in growth plate cartilage for skeletal growth, we developed a mouse model with cartilage-specific inactivation of ERalpha. Although mice with total ERalpha inactivation displayed affected longitudinal bone growth associated with alterations in the GH/IGF-I axis, the skeletal growth was normal during sexual maturation in mice with cartilage-specific ERalpha inactivation. High dose estradiol treatment of adult mice reduced the growth plate height as a consequence of attenuated proliferation of growth plate chondrocytes in control mice but not in cartilage-specific ERalpha(-/-) mice. Adult cartilage-specific ERalpha(-/-) mice continued to grow after four months of age while growth was limited in control mice, resulting in increased femur length in one-year-old cartilage-specific ERalpha(-/-) mice compared with control mice. We conclude that during early sexual maturation ERalpha in growth plate cartilage is not important for skeletal growth. In contrast, it is essential for high dose estradiol to reduce the growth plate height in adult mice and for reduction of longitudinal bone growth in elderly mice. (c) 2010 American Society for Bone and Mineral Research.
  •  
9.
  • Chagin, A S, et al. (författare)
  • Estrogen receptor-beta inhibits skeletal growth and has the capacity to mediate growth plate fusion in female mice.
  • 2004
  • Ingår i: Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. - 0884-0431. ; 19:1, s. 72-7
  • Tidskriftsartikel (refereegranskat)abstract
    • To determine the long-term role of ER beta in the regulation of longitudinal bone growth, appendicular and axial skeletal growth was followed and compared in female ER beta-/-, ER alpha-/-, and ER alpha-/- beta-/- mice. Our results show that ER beta inhibits appendicular and axial skeletal growth and has the capacity to induce fusion of the growth plates. INTRODUCTION: Estrogen affects skeletal growth and promotes growth plate fusion in humans. In rodents, the growth plates do not fuse after sexual maturation, but prolonged treatment with supraphysiological levels of estradiol has the capacity to fuse the growth plates. It should be emphasized that the estrogen receptor (ER) alpha-/- and the ER alpha-/- beta-/-, but not the ER beta-/-, mouse models have clearly increased serum levels of estradiol. MATERIALS AND METHODS: The skeletal growth was monitored by X-ray and dynamic histomorphometry, and the growth plates were analyzed by quantitative histology, calcein double labeling, bromodeoxyuridine (BrdU) incorporation, and TUNEL assay in 4- and 18-month-old female ER beta-/-, ER alpha-/-, and ER alpha-/- beta-/- mice. RESULTS: Young adult (4-month-old) ER beta-/- mice demonstrated an increased axial- and appendicular-skeletal growth, supporting the notion that ER beta inhibits skeletal growth in young adult female mice. Interestingly, the growth plates were consistently fused in the appendicular skeleton of 18-month-old female ER alpha-/- mice. This fusion of growth plates, caused by a prolonged exposure to supraphysiological levels of estradiol in female ER alpha-/- mice, must be mediated through ER beta because old ER alpah-/- beta-/- mice displayed unchanged, unfused growth plates. CONCLUSIONS: Our results confirm that ER beta is a physiological inhibitor of appendicular- and axial-skeletal growth in young adult female mice. Furthermore, we made the novel observation that ER beta, after prolonged supraphysiological estradiol exposure, has the capacity to mediate growth plate fusion in old female mice.
  •  
10.
  • Eriksson, Anna-Lena, 1971, et al. (författare)
  • High-Sensitivity CRP Is an Independent Risk Factor for All Fractures and Vertebral Fractures in Elderly Men : The MrOS Sweden Study
  • 2014
  • Ingår i: Journal of Bone and Mineral Research. - : Wiley. - 0884-0431 .- 1523-4681. ; 29:2, s. 418-423
  • Tidskriftsartikel (refereegranskat)abstract
    • Epidemiological studies have shown low-grade inflammation measured by high-sensitivity C-reactive protein (hs-CRP) to be associated with fracture risk in women. However, it is still unclear whether hs-CRP is also associated with fracture risk in men. We therefore measured serum levels of hs-CRP in 2910 men, mean age 75 years, included in the prospective population-based MrOS Sweden cohort. Study participants were divided into tertile groups based on hs-CRP level. Fractures occurring after the baseline visit were validated (average follow-up 5.4 years). The incidence for having at least one fracture after baseline was 23.9 per 1000 person-years. In Cox proportional hazard regression analyses adjusted for age, hs-CRP was related to fracture risk. The hazard ratio (HR) of fracture for the highest tertile of hs-CRP, compared with the lowest and the medium tertiles combined, was 1.48 (95% CI, 1.20-1.82). Multivariate adjustment for other risk factors for fractures had no major effect on the associations between hs-CRP and fracture. Results were essentially unchanged after exclusion of subjects with hs-CRP levels greater than 7.5mg/L, as well as after exclusion of subjects with a first fracture within 3 years of follow-up, supporting that the associations between hs-CRP and fracture risk were not merely a reflection of a poor health status at the time of serum sampling. Femoral neck bone mineral density (BMD) was not associated with hs-CRP, and the predictive role of hs-CRP for fracture risk was essentially unchanged when femoral neck BMD was added to the model (HR, 1.37; 95% CI, 1.09-1.72). Exploratory subanalyses of fracture type demonstrated that hs-CRP was clearly associated with clinical vertebral fractures (HR, 1.61; 95% CI, 1.12-2.29). We demonstrate, using a large prospective population-based study, that elderly men with high hs-CRP have increased risk of fractures, and that these fractures are mainly vertebral. The association between hs-CRP and fractures was independent of BMD. (c) 2014 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
  •  
11.
  • Erlandsson, Malin, 1972, et al. (författare)
  • Estrogenic agonism and antagonism of the soy isoflavone genistein in uterus, bone and lymphopoiesis in mice
  • 2005
  • Ingår i: Apmis. - 0903-4641. ; 113:5, s. 317-23
  • Tidskriftsartikel (refereegranskat)abstract
    • The isoflavone genistein (Gen) is a naturally occurring phytoestrogen found in high concentrations in soy. The biological effects of Gen have been extensively studied. The immunomodulating properties of Gen are, however, less well investigated and the results are contradictory. Our aim was to study possible estrogen agonistic and antagonistic properties of Gen in uterus, bone, lymphopoiesis and B-cell function by comparing effects in castrated and intact female mice, respectively. Oophorectomized (OVX) and sham-operated mice were treated with s.c. doses of 17beta-estradiol (E2) (0.16 mg/kg), Gen (50 mg/kg), or vehicle (olive oil) as control. Effects on bone mineral density (BMD) were studied using peripheral quantitative computerized tomography, uterine and thymus weights were examined, lymphopoiesis in thymus and bone marrow was analyzed using flow cytometry, and the frequency of immunoglobulin-producing B cells in bone marrow and spleen was studied using an ELISPOT assay. Gen was clearly antagonizing endogenous estrogen in sham-operated female mice as shown by inhibiting the uterine weight and by increasing the frequency of B lymphopoietic cells in bone marrow. The only agonistic effect of Gen was shown by increased BMD in OVX mice. Our results are discussed in the context of estrogen receptor biology.
  •  
12.
  • Farman, Helen H., 1983, et al. (författare)
  • Membrane estrogen receptor alpha is essential for estrogen signaling in the male skeleton
  • 2018
  • Ingår i: Journal of Endocrinology. - : Bioscientifica. - 0022-0795 .- 1479-6805. ; 239:3, s. 303-312
  • Tidskriftsartikel (refereegranskat)abstract
    • The importance of estrogen receptor alpha (ER alpha) for the regulation of bone mass in males is well established. ERa mediates estrogenic effects both via nuclear and membraneinitiated ER alpha (mER alpha) signaling. The role of mERa signaling for the effects of estrogen on bone in male mice is unknown. To investigate the role of mERa signaling, we have used mice (Nuclear-Only-ER; NOER) with a point mutation (C451A), which results in inhibited trafficking of ER alpha to the plasma membrane. Gonadal-intact male NOER mice had a significantly decreased total body areal bone mineral density (aBMD) compared to WT littermates at 3, 6 and 9 months of age as measured by dual-energy X-ray absorptiometry (DEXA). High-resolution microcomputed tomography (mu CT) analysis of tibia in 3-month-old males demonstrated a decrease in cortical and trabecular thickness in NOER mice compared to WT littermates. As expected, estradiol (E2) treatment of orchidectomized (ORX) WT mice increased total body aBMD, trabecular BV/TV and cortical thickness in tibia compared to placebo treatment. E2 treatment increased these skeletal parameters also in ORX NOER mice. However, the estrogenic responses were significantly decreased in ORX NOER mice compared with ORX WT mice. In conclusion, mER alpha is essential for normal estrogen signaling in both trabecular and cortical bone in male mice. Increased knowledge of estrogen signaling mechanisms in the regulation of the male skeleton may aid in the development of new treatment options for male osteoporosis.
  •  
13.
  • Funck-Brentano, Thomas, et al. (författare)
  • Causal Factors for Knee, Hip, and Hand Osteoarthritis: A Mendelian Randomization Study in the UK Biobank
  • 2019
  • Ingår i: Arthritis & Rheumatology. - : Wiley. - 2326-5191 .- 2326-5205. ; 71:10, s. 1634-1641
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective There is no curative treatment for osteoarthritis (OA), which is the most common form of arthritis. This study was undertaken to identify causal risk factors of knee, hip, and hand OA. Methods Individual-level data from 384,838 unrelated participants in the UK Biobank study were analyzed. Mendelian randomization (MR) analyses were performed to test for causality for body mass index (BMI), bone mineral density (BMD), serum high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglyceride levels, type 2 diabetes, systolic blood pressure (BP), and C-reactive protein (CRP) levels. The primary outcome measure was OA determined using hospital diagnoses (all sites, n = 48,431; knee, n = 19,727; hip, n = 11,875; hand, n = 2,330). Odds ratios (ORs) with 95% confidence intervals (95% CIs) were calculated. Results MR analyses demonstrated a robust causal association of genetically determined BMI with all OA (OR per SD increase 1.57 [95% CI 1.44-1.71]), and with knee OA and hip OA, but not with hand OA. Increased genetically determined femoral neck BMD was causally associated with all OA (OR per SD increase 1.14 [95% CI 1.06-1.22]), knee OA, and hip OA. Low systolic BP was causally associated with all OA (OR per SD decrease 1.55 [95% CI 1.29-1.87]), knee OA, and hip OA. There was no evidence of causality for the other tested metabolic factors or CRP level. Conclusion Our findings indicate that BMI exerts a major causal effect on the risk of OA at weight-bearing joints, but not at the hand. Evidence of causality of all OA, knee OA, and hip OA was also observed for high femoral neck BMD and low systolic BP. However, we found no evidence of causality for other metabolic factors or CRP level.
  •  
14.
  • Funck-Brentano, Thomas, et al. (författare)
  • Porcupine inhibitors impair trabecular and cortical bone mass and strength in mice
  • 2018
  • Ingår i: Journal of Endocrinology. - : Bioscientifica. - 0022-0795 .- 1479-6805. ; 238:1, s. 13-23
  • Tidskriftsartikel (refereegranskat)abstract
    • WNT signaling is involved in the tumorigenesis of various cancers and regulates bone homeostasis. Palmitoleoylation of WNTs by Porcupine is required for WNT activity. Porcupine inhibitors are under development for cancer therapy. As the possible side effects of Porcupine inhibitors on bone health are unknown, we determined their effects on bone mass and strength. Twelve-week-old C57BL/6N female mice were treated by the Porcupine inhibitors LGK974 (low dose = 3 mg/kg/day; high dose = 6 mg/kg/day) or Wnt-C59 (10 mg/kg/day) or vehicle for 3 weeks. Bone parameters were assessed by serum biomarkers, dual-energy X-ray absorptiometry, mu CT and histomorphometry. Bone strength was measured by the 3-point bending test. The Porcupine inhibitors were well tolerated demonstrated by normal body weight. Both doses of LGK974 and Wnt-C59 reduced total body bone mineral density compared with vehicle treatment (P < 0.001). Cortical thickness of the femur shaft (P < 0.001) and trabecular bone volume fraction in the vertebral body (P < 0.001) were reduced by treatment with LGK974 or Wnt-C59. Porcupine inhibition reduced bone strength in the tibia (P < 0.05). The cortical bone loss was the result of impaired periosteal bone formation and increased endocortical bone resorption and the trabecular bone loss was caused by reduced trabecular bone formation and increased bone resorption. Porcupine inhibitors exert deleterious effects on bone mass and strength caused by a combination of reduced bone formation and increased bone resorption. We suggest that cancer targeted therapies using Porcupine inhibitors may increase the risk of fractures.
  •  
15.
  • Gergei, Ingrid, et al. (författare)
  • GWAS META-analysis followed by MENDELIAN randomisation revealed potential control mechanisms for circulating α-klotho levels.
  • 2022
  • Ingår i: Human molecular genetics. - : Oxford University Press (OUP). - 1460-2083 .- 0964-6906. ; 31:5, s. 792-802
  • Tidskriftsartikel (refereegranskat)abstract
    • The protein α-Klotho acts as transmembrane the co-receptor for fibroblast growth factor 23 (FGF-23) and is a key regulator of phosphate homeostasis. However, α-Klotho also exists in a circulating form, with pleiotropic, but incompletely understood functions and regulation. Therefore, we undertook a GWAS meta-analysis followed by Mendelian randomisation (MR) of circulating α-Klotho levels.Plasma α-Klotho levels were measured by ELISA in the LURIC and ALSPAC (mothers) cohorts, followed by a GWAS meta-analysis in 4376 individuals across the two cohorts.Six signals at five loci were associated with circulating α-Klotho levels at genome-wide significance (p<5×10-8), namely ABO, KL, FGFR1, and two post-translational modification genes, B4GALNT3 and CHST9. Together, these loci explained >9% of the variation in circulating α-Klotho levels. MR analyses revealed no causal relationships between α-Klotho and renal function, FGF-23-dependent factors such as vitamin D and phosphate levels, or bone mineral density. The screening for genetic correlations with other phenotypes, followed by targeted MR suggested causal effects of liability of Crohn's disease risk [IVW beta=0.059 (95% CI 0.026, 0.093)] and low-density lipoprotein cholesterol (LDL-C) levels [-0.198, (-0.332, -0.063)] on α-Klotho.Our GWAS findings suggest that two enzymes involved in post-translational modification, B4GALNT3 and CHST9, contribute to genetic influences on α-Klotho levels, presumably by affecting protein turnover and stability. Subsequent evidence from MR analyses on α-Klotho levels suggest regulation by mechanisms besides phosphate-homeostasis and raise the possibility of cross-talk with FGF19- and FGF21-dependent pathways, respectively.
  •  
16.
  • Grünberg, John, 1985, et al. (författare)
  • Overexpressing the novel autocrine/endocrine adipokine WISP2 induces hyperplasia of the heart, white and brown adipose tissues and prevents insulin resistance.
  • 2017
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • WISP2 is a novel adipokine, most highly expressed in the adipose tissue and primarily in undifferentiated mesenchymal cells. As a secreted protein, it is an autocrine/paracrine activator of canonical WNT signaling and, as an intracellular protein, it helps to maintain precursor cells undifferentiated. To examine effects of increased WISP2 in vivo, we generated an aP2-WISP2 transgenic (Tg) mouse. These mice had increased serum levels of WISP2, increased lean body mass and whole body energy expenditure, hyperplastic brown/white adipose tissues and larger hyperplastic hearts. Obese Tg mice remained insulin sensitive, had increased glucose uptake by adipose cells and skeletal muscle in vivo and ex vivo, increased GLUT4, increased ChREBP and markers of adipose tissue lipogenesis. Serum levels of the novel fatty acid esters of hydroxy fatty acids (FAHFAs) were increased and transplantation of Tg adipose tissue improved glucose tolerance in recipient mice supporting a role of secreted FAHFAs. The growth-promoting effect of WISP2 was shown by increased BrdU incorporation in vivo and Tg serum increased mesenchymal precursor cell proliferation in vitro. In contrast to conventional canonical WNT ligands, WISP2 expression was inhibited by BMP4 thereby allowing normal induction of adipogenesis. WISP2 is a novel secreted regulator of mesenchymal tissue cellularity.
  •  
17.
  • Gustafsson, Karin L., 1987, et al. (författare)
  • A tissue-specific role of membrane-initiated ERα signaling for the effects of SERMs
  • 2022
  • Ingår i: Journal of Endocrinology. - 0022-0795. ; 253:2, s. 75-84
  • Tidskriftsartikel (refereegranskat)abstract
    • Selective estrogen receptor modulators (SERMs) act as estrogen receptor (ER) agonists or antagonists in a tissue-specific manner. ERs exert effects via nuclear actions but can also utilize membrane-initiated signaling pathways. To dete rmine if membrane-initiated ERα (mERα) signaling affects SERM action in a tissue-specific manner, C451 A mice, lacking mERα signaling due to a mutation at palmitoylation site C451, were treated with Lasofoxifene (Las), Bazedoxifene (Bza), or estradi ol (E2), and various tissues were evaluated. Las and Bza treatment increased uterine weight to a similar extent in C451A and control mice, demonstrating mERα-independent uterine SERM effects, while the E2 effect on the uterus was predominantly mER α-dependent. Las and Bza treatment increased both trabecular and cortical bone mass in controls to a similar degree as E2, while both SERM and E2 treatment effects were abse nt in C451A mice. This demonstrates that SERM effects, similar to E2 effects, in th e skeleton are mERα- dependent. Both Las and E2 treatment decreased thymus weight in controls, while neither treatment affected the thymus in C451A mice, demonstrati ng mERα-dependent SERM and E2 effects in this tissue. Interestingly, both SERM and E2 treatments decreased the total body fat percent in C451A mice, demonstrating the ability of these treatments to affect fat tissue in the absence of functional mER α signaling. In conclusion, mERα signaling can modulate SERM responses in a tissue-specific manne r. This novel knowledge increases the understanding of the mechanisms behind SERM effects and may thereby facilitate the development of new improved SERMs.
  •  
18.
  • Gustafsson, Karin L., 1987, et al. (författare)
  • Arginine site 264 in murine estrogen receptor alpha is dispensable for the regulation of the skeleton.
  • 2021
  • Ingår i: American journal of physiology. Endocrinology and metabolism. - 1522-1555. ; 320:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogen protects against bone loss, but is not a suitable treatment due to adverse effects in other tissues. Increased knowledge regarding estrogen signaling in estrogen-responsive tissues is therefore warranted to aid the development of bone-specific estrogen treatments. Estrogen receptor alpha (ERα), the main mediator of estrogenic effects in bone, is widely subjected to posttranslational modifications (PTMs). In vitro studies have shown that methylation at site R260 in the human ERα affects receptor localization and intracellular signaling. The corresponding amino acid R264 in murine ERα has been shown to have a functional role in endothelium in vivo; albeit the methylation of R264 in the murine gene is yet to be empirically demonstrated. The aim of this study was to investigate if R264 in ERα is involved in the regulation of the skeleton in vivo. DXA analysis at three, six, nine, and twelve months of age showed no differences in total body areal BMD between R264A and WT in either female or male mice. Furthermore, analyses using CT demonstrated that trabecular bone mass in tibia and vertebra, and cortical thickness in tibia, were similar between R264A and WT mice. In addition, R264A females displayed a normal estrogen treatment response in trabecular bone mass, as well as in cortical thickness. Furthermore, uterus, thymus, and adipose tissue responded similarly in R264A and WT female mice after estrogen treatment. In conclusion, our novel finding that mutation of R264 in ERα does not affect the regulation of the skeleton, together with the known role of R264 for ERα-mediated endothelial effects, supports the concept that R264 determines tissue specificity of ERα.
  •  
19.
  • Gustafsson, Karin L., 1987, et al. (författare)
  • ER alpha expression in T lymphocytes is dispensable for estrogenic effects in bone
  • 2018
  • Ingår i: Journal of Endocrinology. - : Bioscientifica. - 0022-0795 .- 1479-6805. ; 238:2, s. 129-136
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogen treatment has positive effects on the skeleton, and we have shown that estrogen receptor alpha (ERa) expression in cells of hematopoietic origin contributes to a normal estrogen treatment response in bone tissue. T lymphocytes are implicated in the estrogenic regulation of bone mass, but it is not known whether T lymphocytes are direct estrogen target cells. Therefore, the aim of this study was to determine the importance of ERa expression in T lymphocytes for the estrogenic regulation of the skeleton using female mice lacking ERa expression specifically in T lymphocytes (Lck-ERa-/-) and ERaflox/flox littermate (control) mice. Deletion of ERa expression in T lymphocytes did not affect bone mineral density (BMD) in sham-operated Lck-ERa-/compared to control mice, and ovariectomy (ovx) resulted in a similar decrease in BMD in control and Lck-ERa-/- mice compared to sham-operated mice. Furthermore, estrogen treatment of ovx Lck-ERa-/- led to an increased BMD that was indistinguishable from the increase seen after estrogen treatment of ovx control mice. Detailed analysis of both the appendicular (femur) and axial (vertebrae) skeleton showed that both trabecular and cortical bone parameters responded to a similar extent regardless of the presence of ERa in T lymphocytes. In conclusion, ERa expression in T lymphocytes is dispensable for normal estrogenic regulation of bone mass in female mice.
  •  
20.
  • Gustafsson, Karin L., 1987, et al. (författare)
  • The role of membrane ER alpha signaling in bone and other major estrogen responsive tissues
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogen receptor a (ER alpha) signaling leads to cellular responses in several tissues and in addition to nuclear ER alpha-mediated effects, membrane ER alpha (mER alpha) signaling may be of importance. To elucidate the significance, in vivo, of mER alpha signaling in multiple estrogen-responsive tissues, we have used female mice lacking the ability to localize ER alpha to the membrane due to a point mutation in the palmitoylation site (C451A), so called Nuclear-Only-ER (NOER) mice. Interestingly, the role of mER alpha signaling for the estrogen response was highly tissue-dependent, with trabecular bone in the axial skeleton being strongly dependent (>80% reduction in estrogen response in NOER mice), cortical and trabecular bone in long bones, as well as uterus and thymus being partly dependent (40-70% reduction in estrogen response in NOER mice) and effects on liver weight and total body fat mass being essentially independent of mER alpha (<35% reduction in estrogen response in NOER mice). In conclusion, mER alpha signaling is important for the estrogenic response in female mice in a tissue-dependent manner. Increased knowledge regarding membrane initiated ER alpha actions may provide means to develop new selective estrogen receptor modulators with improved profiles.
  •  
21.
  • Henning, Petra, 1974, et al. (författare)
  • The novel cytotoxic polybisphosphonate osteodex decreases bone resorption by enhancing cell death of mature osteoclasts without affecting osteoclastogenesis of RANKL-stimulated mouse bone marrow macrophages
  • 2024
  • Ingår i: INVESTIGATIONAL NEW DRUGS. - : Springer. - 0167-6997 .- 1573-0646. ; 42, s. 207-220
  • Tidskriftsartikel (refereegranskat)abstract
    • It has previously been demonstrated that the polybisphosphonate osteodex (ODX) inhibits bone resorption in organ-cultured mouse calvarial bone. In this study, we further investigate the effects by ODX on osteoclast differentiation, formation, and function in several different bone organ and cell cultures. Zoledronic acid (ZOL) was used for comparison. In retinoid-stimulated mouse calvarial organ cultures, ODX and ZOL significantly reduced the numbers of periosteal osteoclasts without affecting Tnfsf11 or Tnfrsf11b mRNA expression. ODX and ZOL also drastically reduced the numbers of osteoclasts in cell cultures isolated from the calvarial bone and in vitamin D3-stimulated mouse crude bone marrow cell cultures. These data suggest that ODX can inhibit osteoclast formation by inhibiting the differentiation of osteoclast progenitor cells or by directly targeting mature osteoclasts. We therefore assessed if osteoclast formation in purified bone marrow macrophage cultures stimulated by RANKL was inhibited by ODX and ZOL and found that the initial formation of mature osteoclasts was not affected, but that the bisphosphonates enhanced cell death of mature osteoclasts. In agreement with these findings, ODX and ZOL did not affect the mRNA expression of the osteoclastic genes Acp5 and Ctsk and the osteoclastogenic transcription factor Nfatc1. When bone marrow macrophages were incubated on bone slices, ODX and ZOL inhibited RANKL-stimulated bone resorption. In conclusion, ODX does not inhibit osteoclast formation but inhibits osteoclastic bone resorption by decreasing osteoclast numbers through enhanced cell death of mature osteoclasts.
  •  
22.
  • Henning, Petra, 1974, et al. (författare)
  • Toll-like receptor-2 induced inflammation causes local bone formation and activates canonical Wnt signaling.
  • 2024
  • Ingår i: Frontiers in immunology. - : Frontiers Media S.A.. - 1664-3224. ; 15:5
  • Tidskriftsartikel (refereegranskat)abstract
    • It is well established that inflammatory processes in the vicinity of bone often induce osteoclast formation and bone resorption. Effects of inflammatory processes on bone formation are less studied. Therefore, we investigated the effect of locally induced inflammation on bone formation. Toll-like receptor (TLR) 2 agonists LPS from Porphyromonas gingivalis and PAM2 were injected once subcutaneously above mouse calvarial bones. After five days, both agonists induced bone formation mainly at endocranial surfaces. The injection resulted in progressively increased calvarial thickness during 21 days. Excessive new bone formation was mainly observed separated from bone resorption cavities. Anti-RANKL did not affect the increase of bone formation. Inflammation caused increased bone formation rate due to increased mineralizing surfaces as assessed by dynamic histomorphometry. In areas close to new bone formation, an abundance of proliferating cells was observed as well as cells robustly stained for Runx2 and alkaline phosphatase. PAM2 increased the mRNA expression of Lrp5, Lrp6 and Wnt7b, and decreased the expression of Sost and Dkk1. In situ hybridization demonstrated decreased Sost mRNA expression in osteocytes present in old bone. An abundance of cells expressed Wnt7b in Runx2-positive osteoblasts and ß-catenin in areas with new bone formation. These data demonstrate that inflammation, not only induces osteoclastogenesis, but also locally activates canonical WNT signaling and stimulates new bone formation independent on bone resorption.
  •  
23.
  • Henning, Petra, 1974, et al. (författare)
  • WNT16 is Robustly Increased by Oncostatin M in Mouse Calvarial Osteoblasts and Acts as a Negative Feedback Regulator of Osteoclast Formation Induced by Oncostatin M
  • 2021
  • Ingår i: Journal of Inflammation Research. ; 14, s. 4723-4741
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Bone loss is often observed adjacent to inflammatory processes. The WNT signaling pathways have been implicated as novel regulators of both immune responses and bone metabolism. WNT16 is important for cortical bone mass by inhibiting osteoclast differentiation, and we have here investigated the regulation of WNT16 by several members of the pro-inflammatory gp130 cytokine family. Methods: The expression and regulation of Wnt16 in primary murine cells were studied by qPCR, scRNAseq and in situ hybridization. Signaling pathways were studied by siRNA silencing. The importance of oncostatin M (OSM)-induced WNT16 expression for osteoclastogenesis was studied in cells from Wnt16-deficient and wild-type mice. Results: We found that IL-6/sIL-6R and OSM induce the expression of Wnt16 in primary mouse calvarial osteoblasts, with OSM being the most robust stimulator. The induction of Wnt16 by OSM was dependent on gp130 and OSM receptor (OSMR), and downstream signaling by the SHC1/STAT3 pathway, but independent of ERK. Stimulation of the calvarial cells with OSM resulted in enhanced numbers of mature, oversized osteoclasts when cells were isolated from Wnt16 deficient mice compared to cells from wild-type mice. OSM did not affect Wnt16 mRNA expression in bone marrow cell cultures, explained by the finding that Wnt16 and Osmr are expressed in distinctly different cells in bone marrow, nor was osteoclast differentiation different in OSM-stimulated bone marrow cell cultures isolated from Wnt16-/- or wild-type mice. Furthermore, we found that Wnt16 expression is substantially lower in cells from bone marrow compared to calvarial osteoblasts. Conclusion: These findings demonstrate that OSM is a robust stimulator of Wnt16 mRNA in calvarial osteoblasts and that WNT16 acts as a negative feedback regulator of OSMinduced osteoclast formation in the calvarial bone cells, but not in the bone marrow.
  •  
24.
  • Horkeby, Karin L, et al. (författare)
  • Phosphorylation of S122 in ERα is important for the skeletal response to estrogen treatment in male mice
  • 2022
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogen receptor alpha (ERα) signaling has beneficial skeletal effects in males. ERα signaling also affects other tissues, and to find bone-specific treatments, more knowledge regarding tissue-specific ERα signaling is needed. ERα is subjected to posttranslational modifications, including phosphorylation, which can influence ERα function in a tissue-specific manner. To determine the importance of phosphorylation site S122 (corresponding to human ERα site S118) for the skeleton and other tissues, male mice with a S122A mutation were used. Total areal bone mineral density was similar between gonadal intact S122A and WT littermates followed up to 12months of age, and weights of estrogen-responsive organs normalized for body weight were unchanged between S122A and WT males at both 3 and 12months of age. Interestingly, 12-month-old S122A males had decreased body weight compared to WT. To investigate if site S122 affects the estrogen response in bone and other tissues, 12-week-old S122A and WT males were orchidectomized (orx) and treated with estradiol (E2) or placebo pellets for four weeks. E2 increased cortical thickness in tibia in both orx WT (+ 60%, p < 0.001) and S122A (+ 45%, p < 0.001) males. However, the E2 effect on cortical thickness was significantly decreased in orx S122A compared to WT mice (−24%, p < 0.05). In contrast, E2 affected trabecular bone and organ weights similarly in orx S122A and WT males. Thus, ERα phosphorylation site S122 is required for a normal E2 response specifically in cortical bone in male mice, a finding that may have implications for development of future treatments against male osteoporosis.
  •  
25.
  • Islander, Ulrika, 1975, et al. (författare)
  • Estren-mediated inhibition of T lymphopoiesis is estrogen receptor-independent whereas its suppression of T cell-mediated inflammation is estrogen receptor-dependent
  • 2005
  • Ingår i: Clin Exp Immunol. - : Oxford University Press (OUP). - 0009-9104 .- 1365-2249. ; 139:2, s. 210-5
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogen has extensive effects on the immune system. The aim of the present experiments was to compare the effects of 17beta-estradiol (E2) and 4-estren-3alpha,17beta-diol (estren) on T lymphopoiesis and T cell-dependent inflammation. In order to investigate the role of estrogen receptors (ER) in the effects of E2 and estren on the immune system, ER knock-out mice lacking both ERalpha and ERbeta (DERKO) were used. T lymphopoiesis and T cell-dependent inflammation were studied by investigating thymus cellularity, the delayed-type hypersensitivity (DTH) reaction, CD4(+) T cells in spleen and serum levels of interleukin (IL)-6. As expected, the presence of ERs was mandatory for all the effects of E2. In contrast, treatment with estren reduced thymus cellularity in ER knock-out mice, indicating an effect through ER-independent pathways. Interestingly, estren suppressed only DTH, the frequency of CD4(+) T cells in spleen and serum levels of IL-6 in wild-type (WT) mice, but not in mice lacking ERs. Thus, our study is the first to show that estren inhibits T lymphopoiesis via ER-independent pathways, whereas its suppressive effects on inflammation are ER-dependent.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 82
Typ av publikation
tidskriftsartikel (80)
annan publikation (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (80)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Movérare-Skrtic, Sof ... (77)
Ohlsson, Claes, 1965 (74)
Henning, Petra, 1974 (28)
Sjögren, Klara, 1970 (26)
Wu, Jianyao (21)
Nilsson, Karin H. (20)
visa fler...
Lerner, Ulf H (18)
Windahl, Sara H, 197 ... (18)
Farman, Helen H., 19 ... (15)
Lagerquist, Marie (14)
Gustafsson, Karin L. ... (14)
Koskela, A (13)
Tuukkanen, J (13)
Islander, Ulrika, 19 ... (12)
Carlsten, Hans, 1954 (11)
Lagerquist, Marie K (11)
Engdahl, Cecilia, 19 ... (10)
Andersson, Niklas, 1 ... (10)
Börjesson, Anna E (9)
Svensson, Johan, 196 ... (8)
Nethander, Maria, 19 ... (7)
Poutanen, Matti (7)
Vanderschueren, Dirk (7)
Lindberg, Marie K, 1 ... (7)
Lionikaite, Vikte (7)
Gustafsson, J. A. (6)
Lindholm, Catharina, ... (6)
Swanson, Charlotte, ... (6)
Venken, Katrien (6)
Skrtic, Stanko, 1970 (5)
Koskela, Antti (5)
Tuukkanen, Juha (5)
Mellström, Dan, 1945 (5)
Gustafsson, Jan-Ake (5)
Andersson, Annica, 1 ... (5)
Funck-Brentano, Thom ... (5)
Lawenius, Lina (5)
Movérare, Sofia (5)
Fick, Jerker (4)
Karlsson, Magnus (4)
Vandenput, Liesbeth, ... (4)
Sävendahl, Lars (4)
Törnqvist, Anna E (4)
Grahnemo, Louise (4)
Westerlund, Anna, 19 ... (4)
Dahlman-Wright, Kari ... (4)
Mohan, Subburaman (4)
El Shahawy, Maha (4)
Li, Lei, 1985 (4)
Bouillon, Roger (4)
visa färre...
Lärosäte
Göteborgs universitet (81)
Karolinska Institutet (21)
Lunds universitet (11)
Chalmers tekniska högskola (11)
Umeå universitet (6)
Uppsala universitet (3)
visa fler...
Linköpings universitet (1)
visa färre...
Språk
Engelska (82)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (61)
Naturvetenskap (1)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy