SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mucciarelli A.) "

Sökning: WFRF:(Mucciarelli A.)

  • Resultat 1-15 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Marconi, A., et al. (författare)
  • ANDES, the high resolution spectrograph for the ELT : science case, baseline design and path to construction
  • 2022
  • Ingår i: GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY IX. - : SPIE - International Society for Optical Engineering. - 9781510653504 - 9781510653498
  • Konferensbidrag (refereegranskat)abstract
    • The first generation of ELT instruments includes an optical-infrared high resolution spectrograph, indicated as ELT-HIRES and recently christened ANDES (ArmazoNes high Dispersion Echelle Spectrograph). ANDES consists of three fibre-fed spectrographs (UBV, RIZ, YJH) providing a spectral resolution of similar to 100,000 with a minimum simultaneous wavelength coverage of 0.4-1.8 mu m with the goal of extending it to 0.35-2.4 mu m with the addition of a K band spectrograph. It operates both in seeing- and diffraction-limited conditions and the fibre-feeding allows several, interchangeable observing modes including a single conjugated adaptive optics module and a small diffraction-limited integral field unit in the NIR. Its modularity will ensure that ANDES can be placed entirely on the ELT Nasmyth platform, if enough mass and volume is available, or partly in the Coude room. ANDES has a wide range of groundbreaking science cases spanning nearly all areas of research in astrophysics and even fundamental physics. Among the top science cases there are the detection of biosignatures from exoplanet atmospheres, finding the fingerprints of the first generation of stars, tests on the stability of Nature's fundamental couplings, and the direct detection of the cosmic acceleration. The ANDES project is carried forward by a large international consortium, composed of 35 Institutes from 13 countries, forming a team of more than 200 scientists and engineers which represent the majority of the scientific and technical expertise in the field among ESO member states.
  •  
2.
  • Gilmore, G., et al. (författare)
  • The Gaia-ESO Public Spectroscopic Survey : Motivation, implementation, GIRAFFE data processing, analysis, and final data products star
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Gaia-ESO Public Spectroscopic Survey is an ambitious project designed to obtain astrophysical parameters and elemental abundances for 100 000 stars, including large representative samples of the stellar populations in the Galaxy, and a well-defined sample of 60 (plus 20 archive) open clusters. We provide internally consistent results calibrated on benchmark stars and star clusters, extending across a very wide range of abundances and ages. This provides a legacy data set of intrinsic value, and equally a large wide-ranging dataset that is of value for the homogenisation of other and future stellar surveys and Gaia's astrophysical parameters. Aims. This article provides an overview of the survey methodology, the scientific aims, and the implementation, including a description of the data processing for the GIRAFFE spectra. A companion paper introduces the survey results. Methods. Gaia-ESO aspires to quantify both random and systematic contributions to measurement uncertainties. Thus, all available spectroscopic analysis techniques are utilised, each spectrum being analysed by up to several different analysis pipelines, with considerable effort being made to homogenise and calibrate the resulting parameters. We describe here the sequence of activities up to delivery of processed data products to the ESO Science Archive Facility for open use. Results. The Gaia-ESO Survey obtained 202 000 spectra of 115 000 stars using 340 allocated VLT nights between December 2011 and January 2018 from GIRAFFE and UVES. Conclusions. The full consistently reduced final data set of spectra was released through the ESO Science Archive Facility in late 2020, with the full astrophysical parameters sets following in 2022. A companion article reviews the survey implementation, scientific highlights, the open cluster survey, and data products.
  •  
3.
  • Randich, S., et al. (författare)
  • The Gaia-ESO Public Spectroscopic Survey : Implementation, data products, open cluster survey, science, and legacy
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. In the last 15 years different ground-based spectroscopic surveys have been started (and completed) with the general aim of delivering stellar parameters and elemental abundances for large samples of Galactic stars, complementing Gaia astrometry. Among those surveys, the Gaia-ESO Public Spectroscopic Survey, the only one performed on a 8m class telescope, was designed to target 100 000 stars using FLAMES on the ESO VLT (both Giraffe and UVES spectrographs), covering all the Milky Way populations, with a special focus on open star clusters. Aims. This article provides an overview of the survey implementation (observations, data quality, analysis and its success, data products, and releases), of the open cluster survey, of the science results and potential, and of the survey legacy. A companion article reviews the overall survey motivation, strategy, Giraffe pipeline data reduction, organisation, and workflow. Methods. We made use of the information recorded and archived in the observing blocks; during the observing runs; in a number of relevant documents; in the spectra and master catalogue of spectra; in the parameters delivered by the analysis nodes and the working groups; in the final catalogue; and in the science papers. Based on these sources, we critically analyse and discuss the output and products of the Survey, including science highlights. We also determined the average metallicities of the open clusters observed as science targets and of a sample of clusters whose spectra were retrieved from the ESO archive. Results. The Gaia-ESO Survey has determined homogeneous good-quality radial velocities and stellar parameters for a large fraction of its more than 110 000 unique target stars. Elemental abundances were derived for up to 31 elements for targets observed with UVES. Lithium abundances are delivered for about 1/3 of the sample. The analysis and homogenisation strategies have proven to be successful; several science topics have been addressed by the Gaia-ESO consortium and the community, with many highlight results achieved. Conclusions. The final catalogue will be released through the ESO archive in the first half of 2022, including the complete set of advanced data products. In addition to these results, the Gaia-ESO Survey will leave a very important legacy, for several aspects and for many years to come.
  •  
4.
  • Marconi, Alessandro, et al. (författare)
  • ELT-HIRES, the high resolution spectrograph for the ELT : Phase A study and path to construction
  • 2020
  • Ingår i: Ground-based and Airborne Instrumentation for Astronomy VIII. - : SPIE - International Society for Optical Engineering. - 9781510636828 - 9781510636811
  • Konferensbidrag (refereegranskat)abstract
    • HIRES is the high-resolution spectrograph of the European Extremely Large Telescope at optical and near-infrared wavelengths. It consists of three fibre-fed spectrographs providing a wavelength coverage of 0.4-1.8 µm (goal 0.35-2.4 µm) at a spectral resolution of 100,000. The fibre-feeding allows HIRES to have several, interchangeable observing modes including a SCAO module and a small diffraction-limited IFU in the NIR. Therefore, it will be able to operate both in seeing- and diffraction-limited modes. Its modularity will ensure that HIRES can be placed entirely on the Nasmyth platform, if enough mass and volume is available, or part on the Nasmyth and part in the Coud`e room. ELT-HIRES has a wide range of science cases spanning nearly all areas of research in astrophysics and even fundamental physics. Among the top science cases there are the detection of biosignatures from exoplanet atmospheres, finding the fingerprints of the first generation of stars (PopIII), tests on the stability of Nature’s fundamental couplings, and the direct detection of the cosmic acceleration. The HIRES consortium is composed of more than 30 institutes from 14 countries, forming a team of more than 200 scientists and engineers.
  •  
5.
  • Smiljanic, R., et al. (författare)
  • The Gaia-ESO Survey: The analysis of high-resolution UVES spectra of FGK-type stars
  • 2014
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 570
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The ongoing Gaia-ESO Public Spectroscopic Survey is using FLAMES at the VLT to obtain high-quality medium-resolution Giraffe spectra for about 10(5) stars and high-resolution UVES spectra for about 5000 stars. With UVES, the Survey has already observed 1447 FGK-type stars. Aims. These UVES spectra are analyzed in parallel by several state-of-the-art methodologies. Our aim is to present how these analyses were implemented, to discuss their results, and to describe how a final recommended parameter scale is defined. We also discuss the precision (method-to-method dispersion) and accuracy (biases with respect to the reference values) of the final parameters. These results are part of the Gaia-ESO second internal release and will be part of its first public release of advanced data products. Methods. The final parameter scale is tied to the scale defined by the Gaia benchmark stars, a set of stars with fundamental atmospheric parameters. In addition, a set of open and globular clusters is used to evaluate the physical soundness of the results. Each of the implemented methodologies is judged against the benchmark stars to define weights in three different regions of the parameter space. The final recommended results are the weighted medians of those from the individual methods. Results. The recommended results successfully reproduce the atmospheric parameters of the benchmark stars and the expected T-eff-log g relation of the calibrating clusters. Atmospheric parameters and abundances have been determined for 1301 FGK-type stars observed with UVES. The median of the method-to-method dispersion of the atmospheric parameters is 55K for T-eff, 0.13dex for log g and 0.07 dex for [Fe/H]. Systematic biases are estimated to be between 50-100 K for T-eff, 0.10-0.25 dex for log g and 0.05-0.10 dex for [Fe/H]. Abundances for 24 elements were derived: C, N, O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ba, Nd, and Eu. The typical method-to-method dispersion of the abundances varies between 0.10 and 0.20 dex. Conclusions. The Gaia-ESO sample of high-resolution spectra of FGK-type stars will be among the largest of its kind analyzed in a homogeneous way. The extensive list of elemental abundances derived in these stars will enable significant advances in the areas of stellar evolution and Milky Way formation and evolution.
  •  
6.
  • Fu, X., et al. (författare)
  • The Gaia-ESO Survey : Lithium enrichment histories of the Galactic thick and thin disc
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 610
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium abundance in most of the warm metal-poor main sequence stars shows a constarnt plateau (A(Li) similar to 2.2 dex) and then the upper envelope of the lithium vs. metallicity distribution increases as we approach solar metallicity. Meteorites, which carry information about the chemical composition of the interstellar medium (ISM) at the solar system formation time, show a lithium abundance A(Li) similar to 3.26 dex. This pattern reflects the Li enrichment history of the ISM during the Galaxy lifetime. After the initial Li production in big bang nucleosynthesis, the sources of the enrichment include asymptotic giant branch (AGB) stars, low-mass red giants, novae, type II supernovae, and Galactic cosmic rays. The total amount of enriched Li is sensitive to the relative contribution of these sources. Thus different Li enrichment histories are expected in the Galactic thick and thin disc. We investigate the main sequence stars observed with UVES in Gaia-ESO Survey iDR4 catalogue and find a Li[alpha/Fe] anticorrelation independent of [Fe/H], T-eff, and log(g). Since in stellar evolution different alpha enhancements at the same metallicity do not lead to a measurable Li abundance change, the anticorrelation indicates that more Li is produced during the Galactic thin disc phase than during the Galactic thick disc phase. We also find a correlation between the abundance of Li and s-process elements Ba and Y, and they both decrease above the solar metallicity, which can be explained in the framework of the adopted Galactic chemical evolution models.
  •  
7.
  • Martin, N. F., et al. (författare)
  • A stellar stream remnant of a globular cluster below the metallicity floor
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 601:7891, s. 45-48
  • Tidskriftsartikel (refereegranskat)abstract
    • Stellar ejecta gradually enrich the gas out of which subsequent stars form, making the least chemically enriched stellar systems direct fossils of structures formed in the early Universe1. Although a few hundred stars with metal content below 1,000th of the solar iron content are known in the Galaxy2–4, none of them inhabit globular clusters, some of the oldest known stellar structures. These show metal content of at least approximately 0.2% of the solar metallicity ([Fe / H] ≳ − 2.7). This metallicity floor appears universal5,6, and it has been proposed that protogalaxies that merged into the galaxies we observe today were simply not massive enough to form clusters that survived to the present day7. Here we report observations of a stellar stream, C-19, whose metallicity is less than 0.05% of the solar metallicity ([Fe/H]=−3.38±0.06(statistical)±0.20(systematic)). The low metallicity dispersion and the chemical abundances of the C-19 stars show that this stream is the tidal remnant of the most metal-poor globular cluster ever discovered, and is significantly below the purported metallicity floor: clusters with significantly lower metallicities than observed today existed in the past and contributed their stars to the Milky Way halo. 
  •  
8.
  • Romano, D., et al. (författare)
  • The Gaia-ESO Survey : Galactic evolution of lithium from iDR6
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 653
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. After more than 50 years, astronomical research still struggles to reconstruct the history of lithium enrichment in the Galaxy and to establish the relative importance of the various 7Li sources in enriching the interstellar medium (ISM) with this fragile element.Aims. To better trace the evolution of lithium in the Milky Way discs, we exploit the unique characteristics of a sample of open clusters (OCs) and field stars for which high-precision 7Li abundances and stellar parameters are homogeneously derived by the Gaia-ESO Survey (GES).Methods. We derive possibly un-depleted 7Li abundances for 26 OCs and star forming regions with ages from young (∼3 Myr) to old (∼4.5 Gyr), spanning a large range of galactocentric distances, 5 < RGC/kpc < 15, which allows us to reconstruct the local late Galactic evolution of lithium as well as its current abundance gradient along the disc. Field stars are added to look further back in time and to constrain 7Li evolution in other Galactic components. The data are then compared to theoretical tracks from chemical evolution models that implement different 7Li forges.Results. Thanks to the homogeneity of the GES analysis, we can combine the maximum average 7Li abundances derived for the clusters with 7Li measurements in field stars. We find that the upper envelope of the 7Li abundances measured in field stars of nearly solar metallicities (−0.3 < [Fe/H]/dex < +0.3) traces very well the level of lithium enrichment attained by the ISM as inferred from observations of cluster stars in the same metallicity range. We confirm previous findings that the abundance of 7Li in the solar neighbourhood does not decrease at super-solar metallicity. The comparison of the data with the chemical evolution model predictions favours a scenario in which the majority of the 7Li abundance in meteorites comes from novae. Current data also seem to suggest that the nova rate flattens out at later times. This requirement might have implications for the masses of the white dwarf nova progenitors and deserves further investigation. Neutrino-induced reactions taking place in core-collapse supernovae also produce some fresh lithium. This likely makes a negligible contribution to the meteoritic abundance, but could be responsible for a mild increase in the 7Li abundance in the ISM of low-metallicity systems that would counterbalance the astration processes.
  •  
9.
  • Cescutti, G., et al. (författare)
  • MINCE I. Presentation of the project and of the first year sample
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 668
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. In recent years, Galactic archaeology has become a particularly vibrant field of astronomy, with its main focus set on the oldest stars of our Galaxy. In most cases, these stars have been identified as the most metal-poor. However, the struggle to find these ancient fossils has produced an important bias in the observations - in particular, the intermediate metal-poor stars (-2.5 < [Fe/H] < -1.5) have been frequently overlooked. The missing information has consequences for the precise study of the chemical enrichment of our Galaxy, in particular for what concerns neutron capture elements and it will be only partially covered by future multi object spectroscopic surveys such as WEAVE and 4MOST.Aims. Measuring at Intermediate Metallicity Neutron Capture Elements (MINCE) is gathering the first high-quality spectra (high signal-to-noise ratio, S/N, and high resolution) for several hundreds of bright and metal-poor stars, mainly located in our Galactic halo.Methods. We compiled our selection mainly on the basis of Gaia data and determined the stellar atmospheres of our sample and the chemical abundances of each star.Results. In this paper, we present the first sample of 59 spectra of 46 stars. We measured the radial velocities and computed the Galactic orbits for all stars. We found that 8 stars belong to the thin disc, 15 to disrupted satellites, and the remaining cannot be associated to the mentioned structures, and we call them halo stars. For 33 of these stars, we provide abundances for the elements up to zinc. We also show the chemical evolution results for eleven chemical elements, based on recent models.Conclusions. Our observational strategy of using multiple telescopes and spectrographs to acquire high S/N and high-resolution spectra for intermediate-metallicity stars has proven to be very efficient, since the present sample was acquired over only about one year of observations. Finally, our target selection strategy, after an initial adjustment, proved satisfactory for our purposes.
  •  
10.
  • Jofre, P., et al. (författare)
  • Gaia FGK benchmark stars : Metallicity
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 564, s. A133-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. To calibrate automatic pipelines that determine atmospheric parameters of stars, one needs a sample of stars, or "benchmark stars", with well-defined parameters to be used as a reference. Aims. We provide detailed documentation of the iron abundance determination of the 34 FGK-type benchmark stars that are selected to be the pillars for calibration of the one billion Gaia stars. They cover a wide range of temperatures, surface gravities, and metallicities. Methods. Up to seven different methods were used to analyze an observed spectral library of high resolutions and high signal-to-noise ratios. The metallicity was determined by assuming a value of effective temperature and surface gravity obtained from fundamental relations; that is, these parameters were known a priori and independently from the spectra. Results. We present a set of metallicity values obtained in a homogeneous way for our sample of benchmark stars. In addition to this value, we provide detailed documentation of the associated uncertainties.Finally, we report a value of the metallicity of the cool giant psi Phe for the first time.
  •  
11.
  • Sanna, N., et al. (författare)
  • The Gaia-ESO Survey : an extremely Li-rich giant in globular cluster NGC 1261
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 639
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium-rich stars in globular clusters are rare. Only 14 have been found so far, in different evolutionary phases from dwarfs to giants. Different mechanisms have been proposed to explain this enhancement, but it is still an open problem. Using spectra collected within the Gaia-ESO Survey, obtained with the GIRAFFE spectrograph at the ESO Very Large Telescope, we present the discovery of the first Li-rich star in the cluster NGC 1261, the second star known in the red giant branch bump phase. The star shows an extreme Li overabundance of A(Li)(LTE)=3.92 +/- 0.14, corresponding to A(Li)(NLTE)=3.40 dex. We propose that the Li enhancement is caused by fresh Li production through an extra mixing process (sometimes referred to as cool bottom burning). Alternatively, it could be a pre-existing Li overabundance caused by mass-transfer from a red giant star; this mechanism does not enhance the barium abundance and thus we observe low barium. To unambiguously explain the Li enhancement in globular cluster stars, however, a reliable determination of the abundance of key species like Be, Li-6, C-12/C-13, and several s-process elements is required, as well as detailed modelling of chromospheric activity indicators.
  •  
12.
  • Roederer, Ian U., et al. (författare)
  • The discovery space of ELT-ANDES. Stars and stellar populations
  • 2024
  • Ingår i: Experimental Astronomy. - 0922-6435. ; 57:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The ArmazoNes high Dispersion Echelle Spectrograph (ANDES) is the optical and near-infrared high-resolution echelle spectrograph envisioned for the Extremely Large Telescope (ELT). We present a selection of science cases, supported by new calculations and simulations, where ANDES could enable major advances in the fields of stars and stellar populations. We focus on three key areas, including the physics of stellar atmospheres, structure, and evolution; stars of the Milky Way, Local Group, and beyond; and the star-planet connection. The key features of ANDES are its wide wavelength coverage at high spectral resolution and its access to the large collecting area of the ELT. These features position ANDES to address the most compelling questions and potentially transformative advances in stellar astrophysics of the decades ahead, including questions which cannot be anticipated today.
  •  
13.
  • Hollyhead, Katherine, et al. (författare)
  • Spectroscopic detection of multiple populations in the similar to 2 Gyr old cluster Hodge 6 in the LMC
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 484:4, s. 4718-4725
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the spectroscopic discovery of abundance spreads (i.e. multiple populations) in the similar to 2 Gyr old cluster in the LMC, Hodge 6. We use low-resolution VLT FORS2 spectra of 15 member stars in the cluster to measure their CN and CH band strengths at similar or equal to 3883 and 4300 angstrom, respectively, as well as [C/Fe] and [N/Fe] abundances. We find a subpopulation of two stars that are enriched in nitrogen, and we conclude that this subpopulation is evidence of multiple populations in Hodge 6. This is the second similar to 2 Gyr old cluster (the first being NGC 1978 in the LMC) to show multiple populations and the first spectroscopic detection of MPs in a cluster of this age. This result is interesting as it hints at a possible relationship between the disappearance of extended main sequence turn-offs in clusters younger than similar to 2 Gyr and the onset of multiple populations at similar to 2 Gyr, which should be explored further.
  •  
14.
  • Martocchia, S., et al. (författare)
  • Age as a major factor in the onset of multiple populations in stellar clusters
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 473:2, s. 2688-2700
  • Tidskriftsartikel (refereegranskat)abstract
    • It is now well established that globular clusters (GCs) exhibit star-to-star light-element abundance variations (known as multiple populations, MPs). Such chemical anomalies have been found in (nearly) all the ancient GCs (more than 10 Gyr old) of our Galaxy and its close companions, but so far no model for the origin of MPs is able to reproduce all the relevant observations. To gain new insights into this phenomenon, we have undertaken a photometric Hubble Space Telescope survey to study clusters with masses comparable to that of old GCs, where MPs have been identified, but with significantly younger ages. Nine clusters in the Magellanic Clouds with ages between similar to 1.5 and 11 Gyr have been targeted in this survey. We confirm the presence of MPs in all clusters older than 6 Gyr and we add NGC 1978 to the group of clusters for which MPs have been identified. With an age of similar to 2 Gyr, NGC 1978 is the youngest cluster known to host chemical abundance spreads found to date. We do not detect evident star-to-star variations for slightly younger massive clusters (similar to 1.7 Gyr), thus pointing towards an unexpected age dependence for the onset of MPs. This discovery suggests that the formation of MPs is not restricted to the early Universe and that GCs and young massive clusters share common formation and evolutionary processes.
  •  
15.
  • Martocchia, S., et al. (författare)
  • The search for multiple populations in Magellanic Cloud clusters - IV. Coeval multiple stellar populations in the young star cluster NGC 1978
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 477:4, s. 4696-4705
  • Tidskriftsartikel (refereegranskat)abstract
    • We have recently shown that the similar to 2 Gyr old Large Magellanic Cloud star cluster NGC 1978 hosts multiple populations in terms of star-to-star abundance variations in [N/Fe]. These can be seen as a splitting or spread in the subgiant and red giant branches (SGB and RGB) when certain photometric filter combinations are used. Because of its relative youth, NGC 1978 can be used to place stringent limits on whether multiple bursts of star formation have taken place within the cluster, as predicted by some models for the origin of multiple populations. We carry out two distinct analyses to test whether multiple star formation epochs have occurred within NGC 1978. First, we use ultraviolet colour-magnitude diagrams (CMDs) to select stars from the first and second population along the SGB, and then compare their positions in optical CMDs, where the morphology is dominantly controlled by age as opposed to multiple population effects. We find that the two populations are indistinguishable, with age differences of 1 +/- 20 Myr between them. This is in tension with predictions from the asymptotic giant branch scenario for the origin of multiple populations. Second, we estimate the broadness of the main-sequence turn-off (MSTO) of NGC 1978 and we report that it is consistent with the observational errors. We find an upper limit of similar to 65 Myr on the age spread in the MSTO of NGC 1978. This finding is in conflict with the age spread scenario as origin of the extended MSTO in intermediate-age clusters, while it fully supports predictions from the stellar rotation model.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-15 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy