SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Muotka Timo) "

Sökning: WFRF:(Muotka Timo)

  • Resultat 1-12 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kløve, Bjørn, et al. (författare)
  • Groundwater dependent ecosystems. Part II. Ecosystem services and management in Europe under risk of climate change and land use intensification
  • 2011
  • Ingår i: Environmental Science and Policy. - : Elsevier BV. - 1462-9011 .- 1873-6416. ; 14:7, s. 782-793
  • Tidskriftsartikel (refereegranskat)abstract
    • Groundwater in sufficient amounts and of suitable quality is essential for potable water supplies, crop irrigation and healthy habitats for plant and animal biocenoses. The groundwater resource is currently under severe pressure from land use and pollution and there is evidence of dramatic changes in aquifer resources in Europe and elsewhere, despite numerous policy measures on sustainable use and protection of groundwater. Little is known about how such changes affect groundwater dependent ecosystems (GDEs), which include various aquatic and terrestrial ecosystems above ground and inside the aquifer. Future management must take this uncertainty into account. This paper focuses on multiple aspects of groundwater science, policy and sustainable management. Examples of current management methods and practices are presented for selected aquifers in Europe and an assessment is made of the effectiveness of existing policies such as the European Water Framework Directive and the Habitat Directive in practice and of how groundwaters and GDEs are managed in various conditions. The paper highlights a number of issues that should be considered in an integrated and holistic approach to future management of groundwater and its dependent ecosystems.
  •  
2.
  • Costello, David M., et al. (författare)
  • Global patterns and controls of nutrient immobilization on decomposing cellulose in riverine ecosystems
  • 2022
  • Ingår i: Global Biogeochemical Cycles. - : John Wiley & Sons. - 0886-6236 .- 1944-9224. ; 36:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Microbes play a critical role in plant litter decomposition and influence the fate of carbon in rivers and riparian zones. When decomposing low-nutrient plant litter, microbes acquire nitrogen (N) and phosphorus (P) from the environment (i.e., nutrient immobilization), and this process is potentially sensitive to nutrient loading and changing climate. Nonetheless, environmental controls on immobilization are poorly understood because rates are also influenced by plant litter chemistry, which is coupled to the same environmental factors. Here we used a standardized, low-nutrient organic matter substrate (cotton strips) to quantify nutrient immobilization at 100 paired stream and riparian sites representing 11 biomes worldwide. Immobilization rates varied by three orders of magnitude, were greater in rivers than riparian zones, and were strongly correlated to decomposition rates. In rivers, P immobilization rates were controlled by surface water phosphate concentrations, but N immobilization rates were not related to inorganic N. The N:P of immobilized nutrients was tightly constrained to a molar ratio of 10:1 despite wide variation in surface water N:P. Immobilization rates were temperature-dependent in riparian zones but not related to temperature in rivers. However, in rivers nutrient supply ultimately controlled whether microbes could achieve the maximum expected decomposition rate at a given temperature. Collectively, we demonstrated that exogenous nutrient supply and immobilization are critical control points for decomposition of organic matter.
  •  
3.
  • Jourdan, Jonas, et al. (författare)
  • Effects of changing climate on European stream invertebrate communities : A long-term data analysis
  • 2018
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 621, s. 588-599
  • Tidskriftsartikel (refereegranskat)abstract
    • Long-term observations on riverine benthic invertebrate communities enable assessments of the potential impacts of global change on stream ecosystems. Besides increasing average temperatures, many studies predict greater temperature extremes and intense precipitation events as a consequence of climate change. In this study we examined long-term observation data (10–32years) of 26 streams and rivers from four ecoregions in the European Long-Term Ecological Research (LTER) network, to investigate invertebrate community responses to changing climatic conditions. We used functional trait and multi-taxonomic analyses and combined examinations of general long-term changes in communities with detailed analyses of the impact of different climatic drivers (i.e., various temperature and precipitation variables) by focusing on the response of communities to climatic conditions of the previous year. Taxa and ecoregions differed substantially in their response to climate change conditions. We did not observe any trend of changes in total taxonomic richness or overall abundance over time or with increasing temperatures, which reflects a compensatory turnover in the composition of communities; sensitive Plecoptera decreased in response to warmer years and Ephemeroptera increased in northern regions. Invasive species increased with an increasing number of extreme days which also caused an apparent upstream community movement. The observed changes in functional feeding group diversity indicate that climate change may be associated with changes in trophic interactions within aquatic food webs. These findings highlight the vulnerability of riverine ecosystems to climate change and emphasize the need to further explore the interactive effects of climate change variables with other local stressors to develop appropriate conservation measures.
  •  
4.
  • Klove, Bjorn, et al. (författare)
  • Climate change impacts on groundwater and dependent ecosystems
  • 2014
  • Ingår i: Journal of Hydrology. - : Elsevier BV. - 0022-1694. ; 518, s. 250-266
  • Tidskriftsartikel (refereegranskat)abstract
    • Aquifers and groundwater-dependent ecosystems (GDEs) are facing increasing pressure from water consumption, irrigation and climate change. These pressures modify groundwater levels and their temporal patterns and threaten vital ecosystem services such as arable land irrigation and ecosystem water requirements, especially during droughts. This review examines climate change effects on groundwater and dependent ecosystems. The mechanisms affecting natural variability in the global climate and the consequences of climate and land use changes due to anthropogenic influences are summarised based on studies from different hydrogeological strata and climate zones. The impacts on ecosystems are discussed based on current findings on factors influencing the biodiversity and functioning of aquatic and terrestrial ecosystems. The influence of changes to groundwater on GDE biodiversity and future threats posed by climate change is reviewed, using information mainly from surface water studies and knowledge of aquifer and groundwater ecosystems. Several gaps in research are identified. Due to lack of understanding of several key processes, the uncertainty associated with management techniques such as numerical modelling is high. The possibilities and roles of new methodologies such as indicators and modelling methods are discussed in the context of integrated groundwater resources management. Examples are provided of management impacts on groundwater, with recommendations on sustainable management of groundwater. (C) 2013 Elsevier B.V. All rights reserved.
  •  
5.
  • Kløve, Bjørn, et al. (författare)
  • Groundwater dependent ecosystems : Part I: Hydroecological status and trends
  • 2011
  • Ingår i: Environmental Science and Policy. - : Elsevier BV. - 1462-9011 .- 1873-6416. ; 14:7, s. 770-781
  • Tidskriftsartikel (refereegranskat)abstract
    • Groundwater dependent ecosystems (GDEs) include valuable ecosystems such as springs, wetlands, rivers, lakes and lagoons. The protection of these systems and services they provide is highlighted by international agreements, i.e. Ramsar convention on wetlands, and regional legislation, i.e. the European Water Framework Directive. Groundwater provides water, nutrients and a relatively stable temperature. However, the role of groundwater in surface ecosystems is not fully understood. The ecosystem can depend on groundwater directly or indirectly, and the reliance can be continuous, seasonal or occasional. This has implications for the vulnerability of ecosystems, as some may be easily affected by external pressure. Conceptual models and quantitative assessments of how groundwater interacts with the environment are needed. GDEs are also threatened by different land use activities and climate change. Hence, we need to understand how GDEs are affected by changes in groundwater quantity and quality, as severe groundwater changes have been observed in many regions. This study examines key aspects of GDEs (hydrogeology, geochemistry and biodiversity) in order to improve conceptual understanding of the role of groundwater in such ecosystems. The status and baseline of different types of GDEs are discussed, with particular emphasis on past evidence of environmental change and potential thresholds and threats in GDEs in various parts of Europe with different land use, climate and geology
  •  
6.
  • Kuglerova, Lenka, et al. (författare)
  • Multiple stressors in small streams in the forestry context of Fennoscandia : The effects in time and space
  • 2021
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 756
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we describe how forest management practices in Fennoscandian countries, namely Sweden and Finland, expose streams to multiple stressors over space and time. In this region, forestry includes several different management actions and we explore how these may successively disturb the same location over 60-100 year long rotation periods. Of these actions, final harvest and associated road construction, soil scarification, and/or ditch network maintenance are the most obvious sources of stressors to aquatic ecosystems. Yet, more subtle actions such as planting, thinning of competing saplings and trees, and removing logging residues also represent disturbances around waterways in these landscapes. We review literature about how these different forestry practices may introduce a combination of physicochemical stressors, including hydrological change, increased sediment transport, altered thermal and light regimes, and water quality deterioration. We further elaborate on how the single stressors may combine and interact and we consequently hypothesise how these interactions may affect aquatic communities and processes. Because production forestry is practiced on a large area in both countries, the various stressors appear multiple times during the rotation cycles and potentially affect the majority of the stream network length within most catchments. We concluded that forestry practices have traditionally not been the focus of multiple stressor studies and should be investigated further in both observational and experimental fashion. Stressors accumulate across time and space in forestry dominated landscapes, and may interact in unpredictable ways, limiting our current understanding of what forested stream networks are exposed to and how we can design and apply best management practices.
  •  
7.
  • Meissner, Kristian, et al. (författare)
  • Predator-prey interactions in a variable environment : responses of a caddis larva and its blackfly prey to variations in stream flow
  • 2009
  • Ingår i: Annales Zoologici Fennici. - : Finnish Zoological and Botanical Publishing Board. - 0003-455X .- 1797-2450. ; 46:3, s. 193-204
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Predator-prey studies in streams have traditionally focused on mayfly-stonefly interactions in relatively constant flow conditions. In reality, however, lotic prey encounter multiple types of predators, most of which are restricted to low-velocity microhabitats. By contrast, some invertebrate prey may occur in very high current velocities. For example, many blackfly species are able to feed at velocities of 100 cm s(-1), whereas even moderate currents reduce the hunting efficiency of their invertebrate predators. The caddisfly larvae of the genus Rhyacophila, however, may be an exception to the pattern of reducing predator efficiency with increasing velocity. Using a combination of laboratory and field experiments and behavioral field observations, we examined the interaction between predatory Rhyacophila caddis larvae and larval blackflies along a velocity gradient of 20-120 cm s(-1). In laboratory experiments, Rhyacophila preferred currents slower than 50 cm s(-1) while blackflies exhibited a wide tolerance of currents and frequently occurred in currents exceeding 100 cm s(-1). In direct field observations, total activity and distance moved by Rhyacophila were similar at all current velocity regimes tested, but frequency of predation attempts on blackflies was lowest at the highest velocities (> 100 cm s(-1)). In a field colonization study, blackflies avoided substrates with the slowest velocities (< 40 cm s(-1)), as also did the caddis larvae. Only velocities approaching 100 cm s(-1) provide blackflies with refuge from predation by Rhyacophila. Being able to maneuver across a wide range of velocities, Rhyacophila may have more pervasive effects on their prey than other lotic invertebrate predators.
  •  
8.
  • Nilsson, Christer, et al. (författare)
  • The Fennoscandian Shield
  • 2022. - 2 uppl.
  • Ingår i: Rivers of Europe. - : Elsevier. - 9780081026120 - 9780081026137 ; , s. 453-494
  • Bokkapitel (refereegranskat)abstract
    • The Fennoscandian Shield encompasses roughly the northern half of Sweden, all of Finland, and the westernmost part of European Russia, ranging in northern latitudes between 60 and 70 degrees, and intersecting the Arctic Circle. This region also represents the westernmost extension of the taiga biome and is well within the boreal zone, covering a tetragon-shaped area between longitude 11 degrees (southwest) and 41 degrees east (northeast). Bedrock is Precambrian, dating back 1.7-1.9 billion years and including metasedimentary, metavolcanic rocks and several generations of granitoids. Even older (2.5-3.1 billion years) rocks (mainly gneisses and greenstone belts) characterize the Archean geological province in northern Finland and Kola Peninsula. These rocks often are overlaid by moraines shaped by erosion of repeated glacial events into a hilly landscape with numerous lakes and watercourses. Most rivers flow into the Baltic and its fringing bays. In Sweden, originating in the mountain chain along the border to Norway, rivers generally flow in an easterly or south-easterly direction, whereas Finnish rivers flow westward, or southward into the Gulf of Finland. The Koutajoki is the exception and drains in an easterly direction into the White Sea. At a mean annual discharge of >2500 m3/s, the Neva River, draining Lake Ladoga, the largest lake in Europe, is the largest river on the Fennoscandian Shield.
  •  
9.
  •  
10.
  • Sarremejane, Romainyuuii, et al. (författare)
  • Stochastic processes and ecological connectivity drive stream invertebrate community responses to short-term drought
  • 2021
  • Ingår i: Journal of Animal Ecology. - : John Wiley & Sons. - 0021-8790 .- 1365-2656. ; 90:4, s. 886-898
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Community responses to and recovery from disturbances depend on local (e.g. presence of refuges) and regional (connectivity to recolonization sources) factors. Droughts are becoming more frequent in boreal regions, and are likely to constitute a severe disturbance for boreal stream communities where organisms largely lack adaptations to such hydrological extremes.2. We conducted an experiment in 24 semi-natural stream flumes to assess the effects of local and regional factors on the responses of benthic invertebrate communities to a short-term drought. We manipulated flow (drought vs. constant-flow), spatial arrangement of leaf litter patches (aggregated vs. evenly distributed) and colonization from regional species pool (enhanced vs. ambient connectivity) to test the combined effects of disturbance, resource arrangement and connectivity on the structural and functional responses of benthic invertebrate communities.3. We found that a drought as short as 1 week reduced invertebrate taxonomic richness and abundance, mainly through stochastic extinctions. Such changes in richness were not reflected in functional diversity. This suggests that communities were characterized by a high degree of functional redundancy, which allowed maintenance of functional diversity despite species losses. Feeding groups responded differently to drought, with organic matter decomposers responding more than scrapers and predators.4. Three weeks were insufficient for complete invertebrate community recovery from drought. However, recovery was greater in channels subjected to enhanced connectivity, which increased taxonomic diversity and abundance of certain taxa. Spatial configuration of resources explained the least variation in our response variables, having a significant effect only on invertebrate abundance and evenness (both sampling occasions) and taxonomic richness (end of recovery period).5. Even a short drought, if occurring late in the season, may not allow communities to recover before the onset of winter, thus having a potentially long-lasting effect on stream communities. For boreal headwaters, extreme dewatering poses a novel disturbance regime that may trigger substantial and potentially irreversible changes. An improved understanding of such changes is needed to underpin adaptive management strategies in these increasingly fragmented and disturbed ecosystems.
  •  
11.
  • Tiegs, Scott D., et al. (författare)
  • Global patterns and drivers of ecosystem functioning in rivers and riparian zones
  • 2019
  • Ingår i: Science Advances. - Washington : American Association of Advancement in Science. - 2375-2548. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth's biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented "next-generation biomonitoring" by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale.
  •  
12.
  • Truchy, Amélie, et al. (författare)
  • Habitat patchiness, ecological connectivity and the uneven recovery of boreal stream ecosystems from an experimental drought
  • 2020
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 26:6, s. 3455-3472
  • Tidskriftsartikel (refereegranskat)abstract
    • Ongoing climate change is increasing the occurrence and intensity of drought episodes worldwide, including in boreal regions not previously regarded as drought prone, and where the impacts of drought remain poorly understood. Ecological connectivity is one factor that might influence community structure and ecosystem functioning post‐drought, by facilitating the recovery of sensitive species via dispersal at both local (e.g. a nearby habitat patch) and regional (from other systems within the same region) scales. In an outdoor mesocosm experiment, we investigated how impacts of drought on boreal stream ecosystems are altered by the spatial arrangement of local habitat patches within stream channels, and variation in ecological connectivity with a regional species pool. We measured basal ecosystem processes underlying carbon and nutrient cycling: (a) algal biomass accrual; (b) microbial respiration; and (c) decomposition of organic matter, and sampled communities of aquatic fungi and benthic invertebrates. An 8‐day drought event had strong impacts on both community structure and ecosystem functioning, including algal accrual, leaf decomposition and microbial respiration, with many of these impacts persisting even after water levels had been restored for 3.5 weeks. Enhanced connectivity with the regional species pool and increased aggregation of habitat patches also affected multiple response variables, especially those associated with microbes, and in some cases reduced the effects of drought to a small extent. This indicates that spatial processes might play a role in the resilience of communities and ecosystem functioning, given enough time. These effects were however insufficient to facilitate significant recovery in algal growth before seasonal dieback began in autumn. The limited resilience of ecosystem functioning in our experiment suggests that even short‐term droughts can have extended consequences for stream ecosystems in the world's vast boreal region, and especially on the ecosystem processes and services mediated by algal biofilms.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-12 av 12
Typ av publikation
tidskriftsartikel (10)
rapport (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (10)
övrigt vetenskapligt/konstnärligt (1)
populärvet., debatt m.m. (1)
Författare/redaktör
Mckie, Brendan (4)
Sponseller, Ryan A. (4)
Laudon, Hjalmar (3)
Lundberg, Angela (3)
De Eyto, Elvira (2)
Peeters, Edwin T. H. ... (2)
visa fler...
Kosten, Sarian (2)
Malmqvist, Björn (2)
Siergieiev, Dmytro (2)
Leroux, Shawn J. (2)
Johnson, Richard (2)
Vilbaste, Sirje (2)
Grossart, Hans-Peter (2)
Derry, Alison M. (2)
LeRoy, Carri J (2)
Kuehn, Kevin A. (2)
Patrick, Christopher ... (2)
Gessner, Mark O. (2)
Boyero, Luz (2)
Graca, Manuel A. S. (2)
Ferreira, Veronica (2)
Callisto, Marcos (2)
Fleituch, Tadeusz (2)
Frainer, André (2)
Iwata, Tomoya (2)
Yule, Catherine M. (2)
Bruder, Andreas (2)
Iñiguez-Armijos, Car ... (2)
Kløve, Bjørn (2)
Leavitt, Peter R. (2)
Capps, Krista A. (2)
Zwart, Jacob A. (2)
Costello, David M. (2)
Tiegs, Scott D. (2)
Canhoto, Cristina (2)
Danger, Michael (2)
Frost, Paul C. (2)
Griffiths, Natalie A ... (2)
Marcarelli, Amy M. (2)
Royer, Todd V. (2)
Aroviita, Jukka (2)
Baxter, Colden V. (2)
Burdon, Francis J. (2)
Colas, Fanny (2)
Cornut, Julien (2)
Crespo-Pérez, Veróni ... (2)
Cross, Wyatt F. (2)
Douglas, Michael M. (2)
Elosegi, Arturo (2)
Ferriol, Carmen (2)
visa färre...
Lärosäte
Umeå universitet (8)
Sveriges Lantbruksuniversitet (5)
Luleå tekniska universitet (3)
Lunds universitet (1)
Språk
Engelska (12)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (11)
Teknik (1)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy