SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Muradyan N) "

Sökning: WFRF:(Muradyan N)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Avetyan, D, et al. (författare)
  • Molecular Analysis of SARS-CoV-2 Lineages in Armenia
  • 2022
  • Ingår i: Viruses. - : MDPI AG. - 1999-4915. ; 14:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The sequencing of SARS-CoV-2 provides essential information on viral evolution, transmission, and epidemiology. In this paper, we performed the whole-genome sequencing of SARS-CoV-2 using nanopore and Illumina sequencing to describe the circulation of the virus lineages in Armenia. The analysis of 145 full genomes identified six clades (19A, 20A, 20B, 20I, 21J, and 21K) and considerable intra-clade PANGO lineage diversity. Phylodynamic and transmission analysis allowed to attribute specific clades as well as infer their importation routes. Thus, the first two waves of positive case increase were caused by the 20B clade, the third peak caused by the 20I (Alpha), while the last two peaks were caused by the 21J (Delta) and 21K (Omicron) variants. The functional analyses of mutations in sequences largely affected epitopes associated with protective HLA loci and did not cause the loss of the signal in PCR tests targeting ORF1ab and N genes as confirmed by RT-PCR. We also compared the performance of nanopore and Illumina short-read sequencing and showed the utility of nanopore sequencing as an efficient and affordable alternative for large-scale molecular epidemiology research. Thus, our paper describes new data on the genomic diversity of SARS-CoV-2 variants in Armenia in the global context of the virus molecular genomic surveillance.
  •  
3.
  • Brzhezinskaya, M. M., et al. (författare)
  • Electronic structure of fluorinated multiwalled carbon nanotubes studied using x-ray absorption and photoelectron spectroscopy
  • 2009
  • Ingår i: Physical Review B (Condensed Matter and Materials Physics). - 1098-0121. ; 79:15
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents the results of combined investigation of the chemical bond formation in fluorinated multiwalled carbon nanotubes (MWCNTs) with different fluorine contents (10-55 wt %) and reference compounds (highly oriented pyrolytic graphite crystals and "white" graphite fluoride) using x-ray absorption and photoelectron spectroscopy at C 1s and F 1s thresholds. Measurements were performed at BESSY II (Berlin, Germany) and MAX-laboratory (Lund, Sweden). The analysis of the soft x-ray absorption and photoelectron spectra points to the formation of covalent chemical bonding between fluorine and carbon atoms in the fluorinated nanotubes. It was established that within the probing depth (similar to 15 nm) of carbon nanotubes, the process of fluorination runs uniformly and does not depend on the fluorine concentration. In this case, fluorine atoms interact with MWCNTs through the covalent attachment of fluorine atoms to graphene layers of the graphite skeleton (phase 1) and this bonding is accompanied by a change in the hybridization of the 2s and 2p valence electron states of the carbon atom from the trigonal (sp(2)) to tetrahedral (sp(3)) hybridization and by a large electron transfer between carbon an fluorine atoms. In the MWCNT near-surface region the second fluorine-carbon phase with weak electron transfer is formed; it is located mainly within two or three upper graphene monolayers, and its contribution becomes much poorer as the probing depth of fluorinated multiwalled carbon nanotubes (F-MWCNTs) increases. The defluorination process of F-MWCNTs on thermal annealing has been investigated. The conclusion has been made that F-MWCNT defluorination without destruction of graphene layers is possible.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy