SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Muri Helene) "

Sökning: WFRF:(Muri Helene)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahlm, Lars, et al. (författare)
  • Marine cloud brightening - as effective without clouds
  • 2017
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 17:21, s. 13071-13087
  • Tidskriftsartikel (refereegranskat)abstract
    • Marine cloud brightening through sea spray injection has been proposed as a climate engineering method for avoiding the most severe consequences of global warming. A limitation of most of the previous modelling studies on marine cloud brightening is that they have either considered individual models or only investigated the effects of a specific increase in the number of cloud droplets. Here we present results from coordinated simulations with three Earth system models (ESMs) participating in the Geoengineering Model Intercomparison Project (GeoMIP) G4sea-salt experiment. Injection rates of accumulation-mode sea spray aerosol particles over ocean between 30 degrees N and 30 degrees S are set in each model to generate a global-mean effective radiative forcing (ERF) of -2.0 W m(-2) at the top of the atmosphere. We find that the injection increases the cloud droplet number concentration in lower layers, reduces the cloud-top effective droplet radius, and increases the cloud optical depth over the injection area. We also find, however, that the global-mean clear-sky ERF by the injected particles is as large as the corresponding total ERF in all three ESMs, indicating a large potential of the aerosol direct effect in regions of low cloudiness. The largest enhancement in ERF due to the presence of clouds occur as expected in the subtropical stratocumulus regions off the west coasts of the American and African continents. However, outside these regions, the ERF is in general equally large in cloudy and clear-sky conditions. These findings suggest a more important role of the aerosol direct effect in sea spray climate engineering than previously thought.
  •  
2.
  • Steg, Linda, et al. (författare)
  • A method to identify barriers to and enablers of implementing climate change mitigation options
  • 2022
  • Ingår i: One Earth. - : Elsevier BV. - 2590-3330 .- 2590-3322. ; 5:11, s. 1216-1227
  • Forskningsöversikt (refereegranskat)abstract
    • Mitigation option are not yet being implemented at the scale required to limit global warming to well below 2°C. Various factors have been identified that inhibit the implementation of specific mitigation options. Yet, an integrated assessment of key barriers and enablers is lacking. Here we present a comprehensive framework to assess which factors inhibit and enable the implementation of mitigation options. The framework comprises six dimensions, each encompassing different criteria: geophysical, environmental-ecological, technological, economic, sociocultural, and institutional feasibility. We demonstrate the approach by assessing to what extent each criterion and dimension affects the feasibility of six mitigation options. The assessment reveals that institutional factors inhibit the implementation of many options that need to be addressed to increase their feasibility. Of all the options assessed, many factors enable the implementation of solar energy, while only a few barriers would need to be addressed to implement solar energy at scale.
  •  
3.
  • Stjern, Camilla W., et al. (författare)
  • Response to marine cloud brightening in a multi-model ensemble
  • 2018
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:2, s. 621-634
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we show results from Earth system model simulations from the marine cloud brightening experiment G4cdnc of the Geoengineering Model Intercomparison Project (GeoMIP). The nine contributing models prescribe a 50% increase in the cloud droplet number concentration (CDNC) of low clouds over the global oceans in an experiment dubbed G4cdnc, with the purpose of counteracting the radiative forcing due to anthropogenic greenhouse gases under the RCP4.5 scenario. The model ensemble median effective radiative forcing (ERF) amounts to -1.9W m(-2), with a substantial inter-model spread of -0.6 to -2.5W m(-2). The large spread is partly related to the considerable differences in clouds and their representation between the models, with an underestimation of low clouds in several of the models. All models predict a statistically significant temperature decrease with a median of (for years 2020-2069) 0.96 [-0.17 to -1.21] K relative to the RCP4.5 scenario, with particularly strong cooling over low-latitude continents. Globally aver-aged there is a weak but significant precipitation decrease of -2.35 [-0.57 to -2.96]% due to a colder climate, but at low latitudes there is a 1.19% increase over land. This increase is part of a circulation change where a strong negative top-of-atmosphere (TOA) shortwave forcing over subtropical oceans, caused by increased albedo associated with the increasing CDNC, is compensated for by rising motion and positive TOA longwave signals over adjacent land regions.
  •  
4.
  • Tilmes, Simone, et al. (författare)
  • The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP)
  • 2013
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202 .- 2169-897X. ; 118:19, s. 11036-11058
  • Tidskriftsartikel (refereegranskat)abstract
    •  The hydrological impact of enhancing Earth's albedo by solar radiation management is investigated using simulations from 12 Earth System models contributing to the Geoengineering Model Intercomparison Project (GeoMIP). We contrast an idealized experiment, G1, where the global mean radiative forcing is kept at preindustrial conditions by reducing insolation while the CO2 concentration is quadrupled to a 4×CO2 experiment. The reduction of evapotranspiration over land with instantaneously increasing CO2 concentrations in both experiments largely contributes to an initial reduction in evaporation. A warming surface associated with the transient adjustment in 4×CO2 generates an increase of global precipitation by around 6.9% with large zonal and regional changes in both directions, including a precipitation increase of 10% over Asia and a reduction of 7% for the North American summer monsoon. Reduced global evaporation persists in G1 with temperatures close to preindustrial conditions. Global precipitation is reduced by around 4.5%, and significant reductions occur over monsoonal land regions: East Asia (6%), South Africa (5%), North America (7%), and South America (6%). The general precipitation performance in models is discussed in comparison to observations. In contrast to the 4×CO2 experiment, where the frequency of months with heavy precipitation intensity is increased by over 50% in comparison to the control, a reduction of up to 20% is simulated in G1. These changes in precipitation in both total amount and frequency of extremes point to a considerable weakening of the hydrological cycle in a geoengineered world.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy