SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Newcombe Virginia) "

Sökning: WFRF:(Newcombe Virginia)

  • Resultat 1-22 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Czeiter, Endre, et al. (författare)
  • Blood biomarkers on admission in acute traumatic brain injury : Relations to severity, CT findings and care path in the CENTER-TBI study
  • 2020
  • Ingår i: EBioMedicine. - : Elsevier. - 2352-3964. ; 56
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Serum biomarkers may inform and improve care in traumatic brain injury (TBI). We aimed to correlate serum biomarkers with clinical severity, care path and imaging abnormalities in TBI, and explore their incremental value over clinical characteristics in predicting computed tomographic (CT) abnormalities.METHODS: We analyzed six serum biomarkers (S100B, NSE, GFAP, UCH-L1, NFL and t-tau) obtained <24 h post-injury from 2867 patients with any severity of TBI in the Collaborative European NeuroTrauma Effectiveness Research (CENTER-TBI) Core Study, a prospective, multicenter, cohort study. Univariable and multivariable logistic regression analyses were performed. Discrimination was assessed by the area under the receiver operating characteristic curve (AUC) with 95% confidence intervals.FINDINGS: All biomarkers scaled with clinical severity and care path (ER only, ward admission, or ICU), and with presence of CT abnormalities. GFAP achieved the highest discrimination for predicting CT abnormalities (AUC 0•89 [95%CI: 0•87-0•90]), with a 99% likelihood of better discriminating CT-positive patients than clinical characteristics used in contemporary decision rules. In patients with mild TBI, GFAP also showed incremental diagnostic value: discrimination increased from 0•84 [95%CI: 0•83-0•86] to 0•89 [95%CI: 0•87-0•90] when GFAP was included. Results were consistent across strata, and injury severity. Combinations of biomarkers did not improve discrimination compared to GFAP alone.INTERPRETATION: Currently available biomarkers reflect injury severity, and serum GFAP, measured within 24 h after injury, outperforms clinical characteristics in predicting CT abnormalities. Our results support the further development of serum GFAP assays towards implementation in clinical practice, for which robust clinical assay platforms are required.FUNDING: CENTER-TBI study was supported by the European Union 7th Framework program (EC grant 602150).
  •  
2.
  • Dickens, Alex Mountfort, et al. (författare)
  • Serum Metabolites Associated with Computed TomographyFindings after Traumatic Brain Injury
  • 2018
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert. - 0897-7151 .- 1557-9042. ; 35:22, s. 2673-2683
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a need to rapidly detect patients with traumatic brain injury (TBI) who require head computed tomography (CT). Given the energy crisis in the brain following TBI, we hypothesized that serum metabolomics would be a useful tool for developing a set of biomarkers to determine the need for CT and to distinguish between different types of injuries observed. Logistic regression models using metabolite data from the discovery cohort (n=144, Turku, Finland) were used to distinguish between patients with traumatic intracranial findings and negative findings on head CT. The resultant models were then tested in the validation cohort (n=66, Cambridge, UK). The levels of glial fibrillary acidic protein and ubiquitin C-terminal hydrolase-L1 were also quantified in the serum from the same patients. Despite there being significant differences in the protein biomarkers in patients with TBI, the model that determined the need for a CT scan validated poorly (AUC=0.64: Cambridge patients). However, using a combination of six metabolites (two amino acids, three sugar derivatives and one ketoacid) it was possible to discriminate patients with intracranial abnormalities on CT and patients with a normal CT (AUC=0.77 in Turku patients and AUC=0.73 in Cambridge patients). Furthermore, a combination of three metabolites could distinguish between diffuse brain injuries and mass lesions (AUC=0.87 in Turku patients and AUC=0.68 in Cambridge patients). This study identifies a set of validated serum polar metabolites, which associate with the need for a CT scan. Additionally, serum metabolites can also predict the nature of the brain injury. These metabolite markers may prevent unnecessary CT scans, thus reducing the cost of diagnostics and radiation load.
  •  
3.
  • Hossain, Iftakher, et al. (författare)
  • Early Levels of Glial Fibrillary Acidic Protein and Neurofilament Light Protein in Predicting the Outcome of Mild Traumatic Brain Injury
  • 2019
  • Ingår i: Journal of neurotrauma. - : Mary Ann Liebert Inc. - 1557-9042 .- 0897-7151. ; 36:10, s. 1551-1560
  • Tidskriftsartikel (refereegranskat)abstract
    • To correlate the early levels of glial fibrillary acidic protein (GFAP) and neurofilament light protein (NF-L) with outcome in patients with mild traumatic brain injury (mTBI). 107 patients with mTBI [Glasgow Coma Scale (GCS) ≥13] having the blood samples for GFAP and NF-L available within 24 hrs from arrival were included. Patients with mTBI were divided into computed tomography (CT)-positive and CT-negative groups. Glasgow Outcome Scale extended (GOSE) was used to assess the outcome. Outcomes were defined as complete (GOSE 8) vs. incomplete (GOSE <8), and favorable (GOSE 5-8) vs. unfavorable (GOSE 1-4). GFAP and NF-L concentrations in blood were measured using ultrasensitive single molecule array technology. Patients with incomplete recovery had significantly higher levels of NF-L compared to those with complete recovery (p=0.005). The levels of GFAP and NF-L were significantly higher in patients with unfavorable outcome than in patients with favorable outcome (p=0.002 for GFAP and p <0.001 for NF-L). For predicting favorable outcome, the area under the ROC curve for GFAP and NF-L was 0.755 and 0.826, respectively. In a multivariate logistic regression model, the level of NF-L was still a significant predictor for complete recovery (OR=1.008, 95%CI, 1.000-1.016). Moreover, the level of NF-L was a significant predictor for complete recovery in CT-positive patients (OR=1.009, 95%CI, 1.001-1.016). The early levels of GFAP and NF-L are significantly correlated with the outcome in patients with mTBI. The level of NF-L within 24 hrs from arrival has a significant predictive value in mTBI also in a multivariate model.
  •  
4.
  • Kamnitsas, Konstantinos, et al. (författare)
  • Transductive Image Segmentation : Self-training and Effect of Uncertainty Estimation
  • 2021
  • Ingår i: Domain Adaptation and Representation Transfer, and Affordable Healthcare and AI for Resource Diverse Global Health - 3rd MICCAI Workshop, DART 2021, and 1st MICCAI Workshop, FAIR 2021, Held in Conjunction with MICCAI 2021, Proceedings. - Cham : Springer International Publishing. - 1611-3349 .- 0302-9743. - 9783030877217 ; 12968 LNCS, s. 79-89
  • Konferensbidrag (refereegranskat)abstract
    • Semi-supervised learning (SSL) uses unlabeled data during training to learn better models. Previous studies on SSL for medical image segmentation focused mostly on improving model generalization to unseen data. In some applications, however, our primary interest is not generalization but to obtain optimal predictions on a specific unlabeled database that is fully available during model development. Examples include population studies for extracting imaging phenotypes. This work investigates an often overlooked aspect of SSL, transduction. It focuses on the quality of predictions made on the unlabeled data of interest when they are included for optimization during training, rather than improving generalization. We focus on the self-training framework and explore its potential for transduction. We analyze it through the lens of Information Gain and reveal that learning benefits from the use of calibrated or under-confident models. Our extensive experiments on a large MRI database for multi-class segmentation of traumatic brain lesions shows promising results when comparing transductive with inductive predictions. We believe this study will inspire further research on transductive learning, a well-suited paradigm for medical image analysis.
  •  
5.
  • Korhonen, Otto, et al. (författare)
  • Outlier analysis for acute blood biomarkers of moderate and severe traumatic brain injury
  • 2024
  • Ingår i: Journal of Neurotrauma. - 0897-7151 .- 1557-9042. ; 41:1-2, s. 91-105
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood biomarkers have been studied to improve the clinical assessment and prognostication of patients with moderate-severe traumatic brain injury (mo/sTBI). To assess their clinical usability, one needs to know of potential factors that might cause outlier values and affect clinical decision making. In a prospective study, we recruited patients with mo/sTBI (n = 85) and measured the blood levels of eight protein brain pathophysiology biomarkers, including glial fibrillary acidic protein (GFAP), S100 calcium-binding protein B (S100B), neurofilament light (Nf-L), heart-Type fatty acid-binding protein (H-FABP), interleukin-10 (IL-10), total tau (T-Tau), amyloid b40 (Ab40) and amyloid b42 (Ab42), within 24 h of admission. Similar analyses were conducted for controls (n = 40) with an acute orthopedic injury without any head trauma. The patients with TBI were divided into subgroups of normal versus abnormal (n = 9/76) head computed tomography (CT) and favorable (Glasgow Outcome Scale Extended [GOSE] 5-8) versus unfavorable (GOSE <5) (n = 38/42, 5 missing) outcome. Outliers were sought individually from all subgroups from and the whole TBI patient population. Biomarker levels outside Q1-1.5 interquartile range (IQR) or Q3 + 1.5 IQR were considered as outliers. The medical records of each outlier patient were reviewed in a team meeting to determine possible reasons for outlier values. A total of 29 patients (34%) combined from all subgroups and 12 patients (30%) among the controls showed outlier values for one or more of the eight biomarkers. Nine patients with TBI and five control patients had outlier values in more than one biomarker (up to 4). All outlier values were > Q3 + 1.5 IQR. A logical explanation was found for almost all cases, except the amyloid proteins. Explanations for outlier values included extremely severe injury, especially for GFAP and S100B. In the case of H-FABP and IL-10, the explanation was extracranial injuries (thoracic injuries for H-FABP and multi-Trauma for IL-10), in some cases these also were associated with abnormally high S100B. Timing of sampling and demographic factors such as age and pre-existing neurological conditions (especially for T-Tau), explained some of the abnormally high values especially for Nf-L. Similar explanations also emerged in controls, where the outlier values were caused especially by pre-existing neurological diseases. To utilize blood-based biomarkers in clinical assessment of mo/sTBI, very severe or fatal TBIs, various extracranial injuries, timing of sampling, and demographic factors such as age and pre-existing systemic or neurological conditions must be taken into consideration. Very high levels seem to be often associated with poor prognosis and mortality (GFAP and S100B).
  •  
6.
  •  
7.
  • Mathieu, François, et al. (författare)
  • Impact of Antithrombotic Agents on Radiological Lesion Progression in Acute Traumatic Brain Injury : A CENTER-TBI Propensity-Matched Cohort Analysis
  • 2020
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert. - 0897-7151 .- 1557-9042. ; 37:19, s. 2069-2080
  • Tidskriftsartikel (refereegranskat)abstract
    • An increasing number of elderly patients are being affected by traumatic brain injury (TBI) and a significant proportion are on pre-hospital antithrombotic therapy for cardio- or cerebrovascular indications. We have quantified the impact of antiplatelet/anticoagulant (APAC) agents on radiological lesion progression in acute TBI, using a novel, semi-automated approach to volumetric lesion measurement, and explored the impact of use on clinical outcomes in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. We used a 1:1 propensity-matched cohort design, matching controls to APAC users based on demographics, baseline clinical status, pre-injury comorbidities, and injury severity. Subjects were selected from a pool of patients enrolled in CENTER-TBI with computed tomography (CT) scan at admission and repeated within 7 days of injury. We calculated absolute changes in volume of intraparenchymal, extra-axial, intraventricular, and total intracranial hemorrhage (ICH) between scans, and compared volume of hemorrhagic progression, proportion of patients with significant degree of progression (>25% of initial volume), proportion with new ICH on follow-up CT, as well as clinical course and outcomes. A total of 316 patients were included (158 APAC users; 158 controls). The mean volume of progression was significantly higher in the APAC group for extra-axial (3.1 vs. 1.3 mL, p = 0.01), but not intraparenchymal (3.8 vs. 4.6 mL, p = 0.65), intraventricular (0.2 vs. 0.0 mL, p = 0.79), or total intracranial hemorrhage (ICH; 7.0 vs. 6.0 mL, p = 0.08). More patients had significant hemorrhage growth (54.1 vs. 37.0%, p = 0.003) and delayed ICH (4 of 18 vs. none; p = 0.04) in the APAC group compared with controls, but this was not associated with differences in length of stay (LOS), rates of neurosurgical intervention, mortality or Glasgow Outcome Scale Extended (GOS-E) score at 6 months. Pre-injury use of antithrombotic agents was associated with greater expansion of extra-axial lesions, higher rates of significant hemorrhagic progression, and higher risk of delayed traumatic ICH, but this was not associated with worse clinical course or functional outcomes.
  •  
8.
  • Mathieu, François, et al. (författare)
  • Relationship Between Measures of Cerebrovascular Reactivity and Intracranial Lesion Progression in Acute TBI Patients : an Exploratory Analysis.
  • 2020
  • Ingår i: Neurocritical Care. - : Springer. - 1541-6933 .- 1556-0961. ; 32:2, s. 373-382
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Failure of cerebral autoregulation and progression of intracranial lesion have both been shown to contribute to poor outcome in patients with acute traumatic brain injury (TBI), but the interplay between the two phenomena has not been investigated. Preliminary evidence leads us to hypothesize that brain tissue adjacent to primary injury foci may be more vulnerable to large fluctuations in blood flow in the absence of intact autoregulatory mechanisms. The goal of this study was therefore to assess the influence of cerebrovascular reactivity measures on radiological lesion expansion in a cohort of patients with acute TBI.METHODS: We conducted a retrospective cohort analysis on 50 TBI patients who had undergone high-frequency multimodal intracranial monitoring and for which at least two brain computed tomography (CT) scans had been performed in the acute phase of injury. We first performed univariate analyses on the full cohort to identify non-neurophysiological factors (i.e., initial lesion volume, timing of scan, coagulopathy) associated with traumatic lesion growth in this population. In a subset analysis of 23 patients who had intracranial recording data covering the period between the initial and repeat CT scan, we then correlated changes in serial volumetric lesion measurements with cerebrovascular reactivity metrics derived from the pressure reactivity index (PRx), pulse amplitude index (PAx), and RAC (correlation coefficient between the pulse amplitude of intracranial pressure and cerebral perfusion pressure). Using multivariate methods, these results were subsequently adjusted for the non-neurophysiological confounders identified in the univariate analyses.RESULTS: We observed significant positive linear associations between the degree of cerebrovascular reactivity impairment and progression of pericontusional edema. The strongest correlations were observed between edema progression and the following indices of cerebrovascular reactivity between sequential scans: % time PRx > 0.25 (r = 0.69, p = 0.002) and % time PAx > 0.25 (r = 0.64, p = 0.006). These associations remained significant after adjusting for initial lesion volume and mean cerebral perfusion pressure. In contrast, progression of the hemorrhagic core and extra-axial hemorrhage volume did not appear to be strongly influenced by autoregulatory status.CONCLUSIONS: Our preliminary findings suggest a possible link between autoregulatory failure and traumatic edema progression, which warrants re-evaluation in larger-scale prospective studies.
  •  
9.
  • Mathieu, François, et al. (författare)
  • Relationship between Measures of CerebrovascularReactivity and Intracranial Lesion Progressionin Acute Traumatic Brain Injury Patients:A CENTER-TBI Study
  • 2020
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert. - 0897-7151 .- 1557-9042. ; 37:13, s. 1556-1565
  • Tidskriftsartikel (refereegranskat)abstract
    • Failure of cerebral autoregulation has been linked to unfavorable outcome after traumatic brain injury (TBI). Preliminary evidence from a small, retrospective, single-center analysis suggests that autoregulatory dysfunction may be associated with traumatic lesion expansion, particularly for pericontusional edema. The goal of this study was to further explore these associations using prospective, multi-center data from the Collaborative European Neurotrauma Effectiveness Research in TBI (CENTER-TBI) and to further explore the relationship between autoregulatory failure, lesion progression, and patient outcome. A total of 88 subjects from the CENTER-TBI High Resolution ICU Sub-Study cohort were included. All patients had an admission computed tomography (CT) scan and early repeat scan available, as well as high-frequency neurophysiological recordings covering the between-scan interval. Using a novel, semiautomated approach at lesion segmentation, we calculated absolute changes in volume of contusion core, pericontusional edema, and extra-axial hemorrhage between the imaging studies. We then evaluated associations between cerebrovascular reactivity metrics and radiological lesion progression using mixed-model regression. Analyses were adjusted for baseline covariates and non-neurophysiological factors associated with lesion growth using multi-variate methods. Impairment in cerebrovascular reactivity was significantly associated with progression of pericontusional edema and, to a lesser degree, intraparenchymal hemorrhage. In contrast, there were no significant associations with extra-axial hemorrhage. The strongest relationships were observed between RAC-based metrics and edema formation. Pulse amplitude index showed weaker, but consistent, associations with contusion growth. Cerebrovascular reactivity metrics remained strongly associated with lesion progression after taking into account contributions from non-neurophysiological factors and mean cerebral perfusion pressure. Total hemorrhagic core and edema volumes on repeat CT were significantly larger in patients who were deceased at 6 months, and the amount of edema was greater in patients with an unfavourable outcome (Glasgow Outcome Scale-Extended 1–4). Our study suggests associations between autoregulatory failure, traumatic edema progression, and poor outcome. This is in keeping with findings from a single-center retrospective analysis, providing multi-center prospective data to support those results.
  •  
10.
  • Mikolić, Ana, et al. (författare)
  • Prognostic models for global functional outcome and post-concussion symptoms following mild traumatic brain injury : a collaborative european neurotrauma effectiveness research in traumatic brain injury (CENTER-TBI) study
  • 2023
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert. - 0897-7151 .- 1557-9042. ; 40:15-16, s. 1651-1670
  • Tidskriftsartikel (refereegranskat)abstract
    • After mild traumatic brain injury (mTBI), a substantial proportion of individuals do not fully recover on the Glasgow Outcome Scale Extended (GOSE) or experience persistent post-concussion symptoms (PPCS). We aimed to develop prognostic models for the GOSE and PPCS at 6 months after mTBI and to assess the prognostic value of different categories of predictors (clinical variables; questionnaires; computed tomography [CT]; blood biomarkers). From the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study, we included participants aged 16 or older with Glasgow Coma Score (GCS) 13-15. We used ordinal logistic regression to model the relationship between predictors and the GOSE, and linear regression to model the relationship between predictors and the Rivermead Post-concussion Symptoms Questionnaire (RPQ) total score. First, we studied a pre-specified Core model. Next, we extended the Core model with other clinical and sociodemographic variables available at presentation (Clinical model). The Clinical model was then extended with variables assessed before discharge from hospital: early post-concussion symptoms, CT variables, biomarkers, or all three categories (extended models). In a subset of patients mostly discharged home from the emergency department, the Clinical model was extended with 2-3-week post-concussion and mental health symptoms. Predictors were selected based on Akaike's Information Criterion. Performance of ordinal models was expressed as a concordance index (C) and performance of linear models as proportion of variance explained (R2). Bootstrap validation was used to correct for optimism. We included 2376 mTBI patients with 6-month GOSE and 1605 patients with 6-month RPQ. The Core and Clinical models for GOSE showed moderate discrimination (C = 0.68 95% confidence interval 0.68 to 0.70 and C = 0.70[0.69 to 0.71], respectively) and injury severity was the strongest predictor. The extended models had better discriminative ability (C = 0.71[0.69 to 0.72] with early symptoms; 0.71[0.70 to 0.72] with CT variables or with blood biomarkers; 0.72[0.71 to 0.73] with all three categories). The performance of models for RPQ was modest (R2 = 4% Core; R2 = 9% Clinical), and extensions with early symptoms increased the R2 to 12%. The 2-3-week models had better performance for both outcomes in the subset of participants with these symptoms measured (C = 0.74 [0.71 to 0.78] vs. C = 0.63[0.61 to 0.67] for GOSE; R2 = 37% vs. 6% for RPQ). In conclusion, the models based on variables available before discharge have moderate performance for the prediction of GOSE and poor performance for the prediction of PPCS. Symptoms assessed at 2-3 weeks are required for better predictive ability of both outcomes. The performance of the proposed models should be examined in independent cohorts.
  •  
11.
  • Needham, Edward J, et al. (författare)
  • Complex Autoantibody Responses Occur following Moderate to Severe Traumatic Brain Injury.
  • 2021
  • Ingår i: Journal of immunology. - : The American Association of Immunologists. - 1550-6606 .- 0022-1767. ; 207:1, s. 90-100
  • Tidskriftsartikel (refereegranskat)abstract
    • Most of the variation in outcome following severe traumatic brain injury (TBI) remains unexplained by currently recognized prognostic factors. Neuroinflammation may account for some of this difference. We hypothesized that TBI generated variable autoantibody responses between individuals that would contribute to outcome. We developed a custom protein microarray to detect autoantibodies to both CNS and systemic Ags in serum from the acute-phase (the first 7 d), late (6-12 mo), and long-term (6-13 y) intervals after TBI in human patients. We identified two distinct patterns of immune response to TBI. The first was a broad response to the majority of Ags tested, predominantly IgM mediated in the acute phase, then IgG dominant at late and long-term time points. The second was responses to specific Ags, most frequently myelin-associated glycopeptide (MAG), which persisted for several months post-TBI but then subsequently resolved. Exploratory analyses suggested that patients with a greater acute IgM response experienced worse outcomes than predicted from current known risk factors, suggesting a direct or indirect role in worsening outcome. Furthermore, late persistence of anti-MAG IgM autoantibodies correlated with raised serum neurofilament light concentrations at these time points, suggesting an association with ongoing neurodegeneration over the first year postinjury. Our results show that autoantibody production occurs in some individuals following TBI, can persist for many years, and is associated with worse patient outcome. The complexity of responses means that conventional approaches based on measuring responses to single antigenic targets may be misleading.
  •  
12.
  • Newcombe, Virginia F J, et al. (författare)
  • Post-acute blood biomarkers and disease progression in traumatic brain injury.
  • 2022
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 145:6, s. 2064-2076
  • Tidskriftsartikel (refereegranskat)abstract
    • There is substantial interest in the potential for traumatic brain injury to result in progressive neurological deterioration. While blood biomarkers such as glial fibrillary acid protein and neurofilament light have been widely explored in characterising acute traumatic brain injury, their use in the chronic phase is limited. Given increasing evidence that these proteins may be markers of ongoing neurodegeneration in a range of diseases, we examined their relationship to imaging changes and functional outcome in the months to years following traumatic brain injury. Two-hundred and three patients were recruited in two separate cohorts; six months post-injury (n=165); and >5 years post-injury (n=38; 12 of whom also provided data ∼8 months post-TBI). Subjects underwent blood biomarker sampling (n=199) and magnetic resonance imaging (n=172; including diffusion tensor imaging). Data from patient cohorts were compared to 59 healthy volunteers and 21 non-brain injury trauma controls. Mean diffusivity and fractional anisotropy were calculated in cortical grey matter, deep grey matter and whole brain white matter. Accelerated brain ageing was calculated at a whole brain level as the predicted age difference defined using T1-weighted images, and at a voxel-based level as the annualised Jacobian determinants in white matter and grey matter, referenced to a population of 652 healthy control subjects. Serum neurofilament light concentrations were elevated in the early chronic phase. While GFAP values were within the normal range at ∼8 months, many patients showed a secondary and temporally distinct elevations up to >5 years after injury. Biomarker elevation at six months was significantly related to metrics of microstructural injury on diffusion tensor imaging. Biomarker levels at ∼8 months predicted white matter volume loss at >5 years, and annualised brain volume loss between ∼8 months and 5 years. Patients who worsened functionally between ∼8 months and >5 years showed higher than predicted brain age and elevated neurofilament light levels. Glial fibrillary acid protein and neurofilament light levels can remain elevated months to years after traumatic brain injury, and show distinct temporal profiles. These elevations correlate closely with microstructural injury in both grey and white matter on contemporaneous quantitative diffusion tensor imaging. Neurofilament light elevations at ∼8 months may predict ongoing white matter and brain volume loss over >5 years of follow up. If confirmed, these findings suggest that blood biomarker levels at late time points could be used to identify traumatic brain injury survivors who are at high risk of progressive neurological damage.
  •  
13.
  • Posti, Jussi P., et al. (författare)
  • SERUM METABOLITES ASSOCIATE WITH HEAD COMPUTED TOMOGRAPHY FINDINGS FOLLOWING TRAUMATIC BRAIN INJURY
  • 2018
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert. - 0897-7151 .- 1557-9042. ; 35:16, s. A67-A67
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • There is a need to rapidly detect patients with traumatic brain injury (TBI) who require head computed tomography (CT). Given the energy crisis in the brain following TBI, we hypothesized that serum metabolomics would be a useful tool for developing a set of bio-markers to determine the need for CT and to distinguish between different types of injuries observed. Logistic regression models using metabolite data from the discovery cohort (n=144, Turku, Finland) were used to distinguish between patients with traumatic intracranial findings and negative findings on head CT. The resultant models were then tested in the validation cohort (n=66, Cambridge, UK). The levels of glial fibrillary acidic protein and ubiquitin C-terminalhydrolase-L1 were also quantified in the serum from the same patients. Despite there being significant differences in the protein bio-markers in patients with TBI, the model that determined the need for a CT scan validated poorly (AUC=0.64: Cambridge patients). However, using a combination of six metabolites (two amino acids, thre esugar derivatives and one ketoacid) it was possible to discriminate patients with intracranial abnormalities on CT and patients with a normal CT (AUC=0.77 in Turku patients and AUC=0.73 in Cambridge patients). Furthermore, a combination of three metabolites could distinguish between diffuse brain injuries and mass lesions (AUC=0.87 in Turku patients and AUC=0.68 in Cambridge pa-tients). This study identifies a set of validated serum polar metabolites, which associate with the need for a CT scan. Additionally, serum metabolites can also predict the nature of the brain injury. These metabolite markers may prevent unnecessary CT scans, thus reducing the cost of diagnostics and radiation load.
  •  
14.
  • Richter, Sophie, et al. (författare)
  • Prognostic Value of Serum Biomarkers in Patients With Moderate-Severe Traumatic Brain Injury, Differentiated by Marshall Computer Tomography Classification
  • 2023
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert. - 0897-7151 .- 1557-9042. ; 40:21-22, s. 2297-2310
  • Tidskriftsartikel (refereegranskat)abstract
    • Prognostication is challenging in patients with traumatic brain injury (TBI) in whom computed tomography (CT) fails to fully explain a low level of consciousness. Serum biomarkers reflect the extent of structural damage in a different way than CT does, but it is unclear whether biomarkers provide additional prognostic value across the range of CT abnormalities. This study aimed to determine the added predictive value of biomarkers, differentiated by imaging severity. This prognostic study used data from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study (2014-2017). The analysis included patients aged & GE;16 years with a moderate-severe TBI (Glasgow Coma Scale [GCS] <13) who had an acute CT and serum biomarkers obtained & LE;24h of injury. Of six protein biomarkers (GFAP, NFL, NSE, S100B, Tau, UCH-L1), the most prognostic panel was selected using lasso regression. The performance of established prognostic models (CRASH and IMPACT) was assessed before and after the addition of the biomarker panel and compared between patients with different CT Marshall scores (Marshall score <3 vs. Marshall score & GE;3). Outcome was assessed at six months post-injury using the extended Glasgow Outcome Scale (GOSE), and dichotomized into favorable and unfavorable (GOSE <5). We included 872 patients with moderate-severe TBI. The mean age was 47 years (range 16-95); 647 (74%) were male and 438 (50%) had a Marshall CT score <3. The serum biomarkers GFAP, NFL, S100B and UCH-L1 provided complementary prognostic information; NSE and Tau showed no added value. The addition of the biomarker panel to established prognostic models increased the area under the curve (AUC) by 0.08 and 0.03, and the explained variation in outcome by 13-14% and 7-8%, for patients with a Marshall score of <3 and & GE;3, respectively. The incremental AUC of biomarkers for individual models was significantly greater when the Marshall score was <3 compared with & GE;3 (p < 0.001). Serum biomarkers improve outcome prediction after moderate-severe TBI across the range of imaging severities and especially in patients with a Marshall score <3.
  •  
15.
  • Richter, Sophie, et al. (författare)
  • Serum biomarkers identify critically ill traumatic brain injury patients for MRI
  • 2022
  • Ingår i: Critical Care. - : BioMed Central (BMC). - 1364-8535 .- 1466-609X. ; 26:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Magnetic resonance imaging (MRI) carries prognostic importance after traumatic brain injury (TBI), especially when computed tomography (CT) fails to fully explain the level of unconsciousness. However, in critically ill patients, the risk of deterioration during transfer needs to be balanced against the benefit of detecting prognostically relevant information on MRI. We therefore aimed to assess if day of injury serum protein biomarkers could identify critically ill TBI patients in whom the risks of transfer are compensated by the likelihood of detecting management-altering neuroimaging findings.METHODS: Data were obtained from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. Eligibility criteria included: TBI patients aged ≥ 16 years, Glasgow Coma Score (GCS) < 13 or patient intubated with unrecorded pre-intubation GCS, CT with Marshall score < 3, serum biomarkers (GFAP, NFL, NSE, S100B, Tau, UCH-L1) sampled ≤ 24 h of injury, MRI < 30 days of injury. The degree of axonal injury on MRI was graded using the Adams-Gentry classification. The association between serum concentrations of biomarkers and Adams-Gentry stage was assessed and the optimum threshold concentration identified, assuming different minimum sensitivities for the detection of brainstem injury (Adams-Gentry stage 3). A cost-benefit analysis for the USA and UK health care settings was also performed. RESULTS: Among 65 included patients (30 moderate-severe, 35 unrecorded) axonal injury was detected in 54 (83%) and brainstem involvement in 33 (51%). In patients with moderate-severe TBI, brainstem injury was associated with higher concentrations of NSE, Tau, UCH-L1 and GFAP. If the clinician did not want to miss any brainstem injury, NSE could have avoided MRI transfers in up to 20% of patients. If a 94% sensitivity was accepted considering potential transfer-related complications, GFAP could have avoided 30% of transfers. There was no added net cost, with savings up to £99 (UK) or $612 (US). No associations between proteins and axonal injury were found in intubated patients without a recorded pre-intubation GCS.CONCLUSIONS: Serum protein biomarkers show potential to safely reduce the number of transfers to MRI in critically ill patients with moderate-severe TBI at no added cost.
  •  
16.
  • Tuure, Juho, et al. (författare)
  • Late Blood Levels of Neurofilament Light Correlate With Outcome in Patients With Traumatic Brain Injury.
  • 2024
  • Ingår i: Journal of neurotrauma. - 1557-9042. ; 41:3-4, s. 359-368
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurofilament light (NF-L) is an axonal protein that has shown promise as a traumatic brain injury (TBI) biomarker. Serum NF-L shows a rather slow rise after injury, peaking after 1-2 weeks, although some studies suggest that it may remain elevated for months after TBI. The aim of this study was to examine if plasma NF-L levels several months after the injury correlate with functional outcome in patients who have sustained TBIs of variable initial severity. In this prospective study of 178 patients with TBI and 40 orthopedic injury controls, we measured plasma NF-L levels in blood samples taken at the follow-up appointment on average 9 months after injury. Patients with TBI were divided into two groups (mild [mTBI] vs. moderate-to-severe [mo/sTBI]) according to the severity of injury assessed with the Glasgow Coma Scale upon admission. Recovery and functional outcome were assessed using the Extended Glasgow Outcome Scale (GOSE). Higher levels of NF-L at the follow-up correlated with worse outcome in patients with moderate-to-severe TBI (Spearman's rho=-0.18; p<0.001). In addition, in computed tomography-positive mTBI group, the levels of NF-L were significantly lower in patients with GOSE 7-8 (median 18.14; interquartile range [IQR] 9.82, 32.15) when compared with patients with GOSE <7 (median 73.87; IQR 32.17, 110.54; p=0.002). In patients with mTBI, late NF-L levels do not seem to provide clinical benefit for late-stage assessment, but in patients with initially mo/sTBI, persistently elevated NF-L levels are associated with worse outcome after TBI and may reflect ongoing brain injury.
  •  
17.
  • Whitehouse, Daniel P., et al. (författare)
  • Blood biomarkers and structural imaging correlations post-traumatic brain injury : A systematic review
  • 2021
  • Ingår i: Neurosurgery. - : Wolters Kluwer. - 0148-396X .- 1524-4040. ; 90:2, s. 170-179
  • Forskningsöversikt (refereegranskat)abstract
    • Background: Blood biomarkers are of increasing importance in the diagnosis and assessment of traumatic brain injury (TBI). However, the relationship between them and lesions seen on imaging remains unclear.Objective: To perform a systematic review of the relationship between blood biomarkers and intracranial lesion types, intracranial lesion injury patterns, volume/number of intracranial lesions, and imaging classification systems.Methods: We searched Medical Literature Analysis and Retrieval System Online, Excerpta Medica dataBASE, and Cumulative Index to Nursing and Allied Health Literature from inception to May 2021, and the references of included studies were also screened. Heterogeneity in study design, biomarker types, imaging modalities, and analyses inhibited quantitative analysis, with a qualitative synthesis presented.Results: Fifty-nine papers were included assessing one or more biomarker to imaging comparisons per paper: 30 assessed imaging classifications or injury patterns, 28 assessed lesion type, and 11 assessed lesion volume or number. Biomarker concentrations were associated with the burden of brain injury, as assessed by increasing intracranial lesion volume, increasing numbers of traumatic intracranial lesions, and positive correlations with imaging classification scores. There were inconsistent findings associating different biomarkers with specific imaging phenotypes including diffuse axonal injury, cerebral edema, and intracranial hemorrhage.Conclusion: Blood-based biomarker concentrations after TBI are consistently demonstrated to correlate burden of intracranial disease. The relation with specific injury types is unclear suggesting a lack of diagnostic specificity and/or is the result of the complex and heterogeneous nature of TBI.
  •  
18.
  • Whitehouse, Daniel P., et al. (författare)
  • Relationship of admission blood proteomic biomarkers levels to lesion type and lesion burden in traumatic brain injury : A CENTER-TBI study
  • 2022
  • Ingår i: EBioMedicine. - : Elsevier. - 2352-3964. ; 75
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: We aimed to understand the relationship between serum biomarker concentration and lesion type and volume found on computed tomography (CT) following all severities of TBI.Methods: Concentrations of six serum biomarkers (GFAP, NFL, NSE, S100B, t-tau and UCH-L1) were measured in samples obtained <24 hours post-injury from 2869 patients with all severities of TBI, enrolled in the CENTER-TBI prospective cohort study (NCT02210221). Imaging phenotypes were defined as intraparenchymal haemorrhage (IPH), oedema, subdural haematoma (SDH), extradural haematoma (EDH), traumatic subarachnoid haemorrhage (tSAH), diffuse axonal injury (DAI), and intraventricular haemorrhage (IVH). Multivariable polynomial regression was performed to examine the association between biomarker levels and both distinct lesion types and lesion volumes. Hierarchical clustering was used to explore imaging phenotypes; and principal component analysis and k-means clustering of acute biomarker concentrations to explore patterns of biomarker clustering.Findings: 2869 patient were included, 68% (n=1946) male with a median age of 49 years (range 2-96). All severities of TBI (mild, moderate and severe) were included for analysis with majority (n=1946, 68%) having a mild injury (GCS 13-15). Patients with severe diffuse injury (Marshall III/IV) showed significantly higher levels of all measured biomarkers, with the exception of NFL, than patients with focal mass lesions (Marshall grades V/VI). Patients with either DAI+IVH or SDH+IPH+tSAH, had significantly higher biomarker concentrations than patients with EDH. Higher biomarker concentrations were associated with greater volume of IPH (GFAP, S100B, t-tau;adj r2 range:0·48-0·49; p<0·05), oedema (GFAP, NFL, NSE, t-tau, UCH-L1;adj r2 range:0·44-0·44; p<0·01), IVH (S100B;adj r2 range:0.48-0.49; p<0.05), Unsupervised k-means biomarker clustering revealed two clusters explaining 83·9% of variance, with phenotyping characteristics related to clinical injury severity.Interpretation: Interpretation: Biomarker concentration within 24 hours of TBI is primarily related to severity of injury and intracranial disease burden, rather than pathoanatomical type of injury.
  •  
19.
  • Wilson, Lindsay, et al. (författare)
  • Tailoring multi-dimensional outcomes to level of functional recovery after traumatic brain injury
  • 2022
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert. - 0897-7151 .- 1557-9042. ; 39:19-20, s. 1363-1381
  • Tidskriftsartikel (refereegranskat)abstract
    • There is increasing emphasis on assessing multi-dimensional outcomes in traumatic brain injury (TBI), but achieving this aim is hampered by a plethora of overlapping assessment tools. There is a clear need for advice on the choice of outcomes and we examined level of functional recovery as a framework to guide selection of assessments. In this cohort study we analysed cross-sectional data from 2604 patients enrolled in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) project. Patients were followed up 6 months after injury and assessed on the Glasgow Outcome Scale-Extended (GOSE), cognitive tests, and patient-reported outcomes. We describe assessment completeness and prevalence of impairment. Relationships between outcomes were visualized using UpSet plots and hierarchical cluster analysis. GOSE categories varied markedly for both completion rates, 34-91% for patient-reported outcomes and 9-81% for cognitive tests, and prevalence of impairment, 3-82% for patient-reported outcomes and 9-59% for cognitive tests. In complete case samples, the GOSE identified impairment in 59-61%, whereas the most impaired patient-reported outcome was the Short Form-12 version 2 (SF-12v2) Physical Component Summary (28% overall), and the most impaired cognitive test was Trail Making Test (TMT) Part A (19% overall). The findings show that degree of disability is a key context of use for cognitive tests and patient-reported outcomes. Level of functional recovery provides a guide to the feasibility of different types of assessment and the likelihood of impairment, and can help tailor suitable assessment approaches in clinical practice and research studies.
  •  
20.
  • Wilson, Lindsay, et al. (författare)
  • Understanding the relationship between cognitive performance and function in daily life after traumatic brain injury
  • 2020
  • Ingår i: Journal of Neurology, Neurosurgery and Psychiatry. - : BMJ Publishing Group Ltd. - 0022-3050 .- 1468-330X.
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Cognitive impairment is a key cause of disability after traumatic brain injury (TBI) but relationships with overall functioning in daily life are often modest. The aim is to examine cognition at different levels of function and identify domains associated with disability.METHODS: 1554 patients with mild-to-severe TBI were assessed at 6 months post injury on the Glasgow Outcome Scale-Extended (GOSE), the Short Form-12v2 and a battery of cognitive tests. Outcomes across GOSE categories were compared using analysis of covariance adjusting for age, sex and education.RESULTS: Overall effect sizes were small to medium, and greatest for tests involving processing speed (ηp2 0.057-0.067) and learning and memory (ηp2 0.048-0.052). Deficits in cognitive performance were particularly evident in patients who were dependent (GOSE 3 or 4) or who were unable to participate in one or more major life activities (GOSE 5). At higher levels of function (GOSE 6-8), cognitive performance was surprisingly similar across categories. There were decreases in performance even in patients reporting complete recovery without significant symptoms. Medium to large effect sizes were present for summary measures of cognition (ηp2 0.111), mental health (ηp2 0.131) and physical health (ηp2 0.252).CONCLUSIONS: This large-scale study provides novel insights into cognitive performance at different levels of disability and highlights the importance of processing speed in function in daily life. At upper levels of outcome, any influence of cognition on overall function is markedly attenuated and differences in mental health are salient.
  •  
21.
  • Zeiler, Frederick A., et al. (författare)
  • Diffuse intracranial injury patterns are associated with impaired cerebrovascular reactivity in adult traumatic brain injury : a CENTER-TBI validation study
  • 2020
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert. - 0897-7151 .- 1557-9042. ; 37:4, s. 1597-1608
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent single-center retrospective analysis displayed the association between admission computed tomography (CT) markers of diffuse intracranial injury and worse cerebrovascular reactivity. The goal of this study was to further explore these associations using the prospective multi-center Collaborative European Neurotrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) high-resolution intensive care unit (HR ICU) data set. Using the CENTER-TBI HR ICU sub-study cohort, we evaluated those patients with both archived high-frequency digital physiology (100 Hz or higher) and the presence of a digital admission CT scan. Physiological signals were processed for pressure reactivity index (PRx) and both the percent (%) time above defined PRx thresholds and mean hourly dose above threshold. Admission CT injury scores were obtained from the database. Quantitative contusion, edema, intraventricular hemorrhage (IVH), and extra-axial lesion volumes were obtained via semi-automated segmentation. Comparison between admission CT characteristics and PRx metrics was conducted using Mann-U, Jonckheere-Terpstra testing, with a combination of univariate linear and logistic regression techniques. A total of 165 patients were included. Cisternal compression and high admission Rotterdam and Helsinki CT scores, and Marshall CT diffuse injury sub-scores were associated with increased percent (%) time and hourly dose above PRx threshold of 0, +0.25, and +0.35 (p < 0.02 for all). Logistic regression analysis displayed an association between deep peri-contusional edema and mean PRx above a threshold of +0.25. These results suggest that diffuse injury patterns, consistent with acceleration/deceleration forces, are associated with impaired cerebrovascular reactivity. Diffuse admission intracranial injury patterns appear to be consistently associated with impaired cerebrovascular reactivity, as measured through PRx. This is in keeping with the previous single-center retrospective literature on the topic. This study provides multi-center validation for those results, and provides preliminary data to support potential risk stratification for impaired cerebrovascular reactivity based on injury pattern.
  •  
22.
  • Zeiler, Frederick Adam, et al. (författare)
  • Systemic Markers of Injury and Injury Response are not Associated with Impaired Cerebrovascular Reactivity in Adult TBI : A CENTER-TBI Study
  • 2021
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert Inc.. - 0897-7151 .- 1557-9042. ; 38:7, s. 870-878
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of extra-cranial injury burden on cerebrovascular response in traumatic brain injury (TBI) is poorly documented. This study preliminarily assesses the association between admission features of extra-cranial injury burden on cerebrovascular reactivity. Using the CENTER-TBI HR ICU sub-study cohort, we evaluated those patients with both archived high-frequency digital intra-parenchymal ICP monitoring data of a minimum of 6 hours in duration, and the presence of a digital copy of their admission CT scan. Digital physiologic signals were processed for pressure reactivity index (PRx) and both the % time above defined PRx thresholds and mean hourly dose above threshold. This was conducted for both the first 72 hours and entire duration of recording. Admission extra-cranial injury characteristics and CT injury scores were obtained from the database, with quantitative contusion, edema, intraventricular hemorrhage (IVH) and extra-axial lesion volumes were obtained via semi-automated segmentation. Comparison between admission extra-cranial markers of injury and PRx metrics was conducted using Mann-U testing, and logistic regression techniques, adjusting for known CT injury metrics associated with impaired PRx. A total of 165 patients were included. Evaluating the entire ICU recording period, there was limited association between metrics of extra-cranial injury burden and impaired cerebrovascular reactivity. Using the first 72 hours of recording, admission temperature (p=0.042) and white blood cell % (WBC %) (p=0.013) were statistically associated with impaired cerebrovascular reactivity on Mann-U and univariate logistic regression. After adjusting for admission age, pupillary status, GCS motor score, pre-hospital hypoxia/hypotension and intra-cranial CT characteristics associated with impaired reactivity, temperature (p=0.021) and WBC % (p=0.013) remained significantly associated with mean PRx values above +0.25 and +0.35, respectively. Markers of extra-cranial injury burden do not appear to be strongly associated with impaired cerebrovascular reactivity in TBI, during both the initial and entire ICU stay. Keywords: autoregulation, cerebrovascular reactivity, extra-cranial injury, injury burden, TBI
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-22 av 22
Typ av publikation
tidskriftsartikel (20)
konferensbidrag (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (21)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Menon, David K. (17)
Newcombe, Virginia F ... (13)
Tenovuo, Olli (7)
Maas, Andrew I. R. (7)
Newcombe, Virginia (7)
Brorsson, Camilla (6)
visa fler...
Czeiter, Endre (6)
Posti, Jussi P. (6)
Maanpää, Henna-Riikk ... (6)
Blennow, Kaj, 1958 (5)
Zetterberg, Henrik, ... (5)
Koskinen, Lars-Owe D ... (5)
Ercole, Ari (5)
Büki, Andras, 1966- (5)
Amrein, Krisztina (5)
Menon, David (5)
Smielewski, Peter (4)
Sundström, Nina (4)
Wang, Kevin K.W. (4)
Verheyden, Jan (4)
Yang, Zhihui (4)
Frantzén, Janek (4)
Orešič, Matej, 1967- (3)
Stocchetti, Nino (3)
Steyerberg, Ewout (3)
van Gils, Mark (3)
Steyerberg, Ewout W. (3)
Winzeck, Stefan (3)
Mondello, Stefania (3)
Mohammadian, Mehrbod (3)
Lingsma, Hester F. (3)
Polinder, Suzanne (3)
Richter, Sophie (3)
Katila, Ari J. (3)
Hyötyläinen, Tuulia, ... (2)
Mattila, Ismo (2)
Ashton, Nicholas J. (2)
Simrén, Joel, 1996 (2)
von Steinbuechel, Ni ... (2)
Koskinen, Lars-Owe, ... (2)
Hutchinson, Peter (2)
Levin, Harvey (2)
Maegele, Marc (2)
Hutchinson, Peter Jo ... (2)
Lecky, Fiona (2)
Vyvere, Thijs Vande (2)
Xu, Haiyan (2)
Takala, Riikka Sk. (2)
Ala-Seppälä, Henna M ... (2)
Kyllönen, Anna (2)
visa färre...
Lärosäte
Umeå universitet (10)
Örebro universitet (9)
Karolinska Institutet (9)
Göteborgs universitet (5)
Lunds universitet (2)
Språk
Engelska (22)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (20)
Naturvetenskap (1)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy