SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nie Mu) "

Sökning: WFRF:(Nie Mu)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Albrechtsen, A., et al. (författare)
  • Exome sequencing-driven discovery of coding polymorphisms associated with common metabolic phenotypes
  • 2013
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 56:2, s. 298-310
  • Tidskriftsartikel (refereegranskat)abstract
    • Human complex metabolic traits are in part regulated by genetic determinants. Here we applied exome sequencing to identify novel associations of coding polymorphisms at minor allele frequencies (MAFs) > 1% with common metabolic phenotypes. The study comprised three stages. We performed medium-depth (8x) whole exome sequencing in 1,000 cases with type 2 diabetes, BMI > 27.5 kg/m(2) and hypertension and in 1,000 controls (stage 1). We selected 16,192 polymorphisms nominally associated (p < 0.05) with case-control status, from four selected annotation categories or from loci reported to associate with metabolic traits. These variants were genotyped in 15,989 Danes to search for association with 12 metabolic phenotypes (stage 2). In stage 3, polymorphisms showing potential associations were genotyped in a further 63,896 Europeans. Exome sequencing identified 70,182 polymorphisms with MAF > 1%. In stage 2 we identified 51 potential associations with one or more of eight metabolic phenotypes covered by 45 unique polymorphisms. In meta-analyses of stage 2 and stage 3 results, we demonstrated robust associations for coding polymorphisms in CD300LG (fasting HDL-cholesterol: MAF 3.5%, p = 8.5 x 10(-14)), COBLL1 (type 2 diabetes: MAF 12.5%, OR 0.88, p = 1.2 x 10(-11)) and MACF1 (type 2 diabetes: MAF 23.4%, OR 1.10, p = 8.2 x 10(-10)). We applied exome sequencing as a basis for finding genetic determinants of metabolic traits and show the existence of low-frequency and common coding polymorphisms with impact on common metabolic traits. Based on our study, coding polymorphisms with MAF above 1% do not seem to have particularly high effect sizes on the measured metabolic traits.
  •  
2.
  •  
3.
  • Lepzien, Rico, et al. (författare)
  • Monocytes in sarcoidosis are potent tumour necrosis factor producers and predict disease outcome
  • 2021
  • Ingår i: European Respiratory Journal. - : European Respiratory Society (ERS). - 0903-1936 .- 1399-3003. ; 58:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Pulmonary sarcoidosis is an inflammatory disease characterised by granuloma formation and heterogeneous clinical outcome. Tumour necrosis factor (TNF) is a pro-inflammatory cytokine contributing to granuloma formation and high levels of TNF have been shown to associate with progressive disease. Mononuclear phagocytes (MNPs) are potent producers of TNF and highly responsive to inflammation. In sarcoidosis, alveolar macrophages have been well studied. However, MNPs also include monocytes/monocyte-derived cells and dendritic cells, which are poorly studied in sarcoidosis, despite their central role in inflammation.Objective To determine the role of pulmonary monocyte-derived cells and dendritic cells during sarcoidosis.Methods We performed in-depth phenotypic, functional and transcriptomic analysis of MNP subsets from blood and bronchoalveolar lavage (BAL) fluid from 108 sarcoidosis patients and 30 healthy controls. We followed the clinical development of patients and assessed how the repertoire and function of MNP subsets at diagnosis correlated with 2-year disease outcome.Results Monocytes/monocyte-derived cells were increased in blood and BAL of sarcoidosis patients compared to healthy controls. Interestingly, high frequencies of blood intermediate monocytes at time of diagnosis associated with chronic disease development. RNA sequencing analysis showed highly inflammatory MNPs in BAL of sarcoidosis patients. Furthermore, frequencies of BAL monocytes/ monocyte-derived cells producing TNF without exogenous stimulation at time of diagnosis increased in patients that were followed longitudinally. In contrast to alveolar macrophages, the frequency of TNFproducing BAL monocytes/monocyte-derived cells at time of diagnosis was highest in sarcoidosis patients that developed progressive disease.Conclusion Our data show that pulmonary monocytes/monocyte-derived cells are highly inflammatory and can be used as a predictor of disease outcome in sarcoidosis patients.
  •  
4.
  • Lepzien, Rico, et al. (författare)
  • Pulmonary and blood dendritic cells from sarcoidosis patients more potently induce IFNγ-producing Th1 cells compared with monocytes
  • 2022
  • Ingår i: Journal of Leukocyte Biology. - 0741-5400 .- 1938-3673. ; 111:4, s. 857-866
  • Tidskriftsartikel (refereegranskat)abstract
    • Sarcoidosis is a systemic inflammatory disease mainly affecting the lungs. The hallmark of sarcoidosis are granulomas that are surrounded by activated T cells, likely targeting the disease-inducing antigen. IFNγ-producing Th1 and Th17.1 T cells are elevated in sarcoidosis and associate with disease progression. Monocytes and dendritic cells (DCs) are antigen-presenting cells (APCs) and required for T cell activation. Several subsets of monocytes and DCs with different functions were identified in sarcoidosis. However, to what extent different monocyte and DC subsets can support activation and skewing of T cells in sarcoidosis is still unclear. In this study, we performed a transcriptional and functional side-by-side comparison of sorted monocytes and DCs from matched blood and bronchoalveolar lavage (BAL) fluid of sarcoidosis patients. Transcriptomic analysis of all subsets showed upregulation of genes related to T cell activation and antigen presentation in DCs compared with monocytes. Allogeneic T cell proliferation was higher after coculture with monocytes and DCs from blood compared with BAL and DCs induced more T cell proliferation compared with monocytes. After coculture, proliferating T cells showed high expression of the transcription factor Tbet and IFNγ production. We also identified Tbet and RORγt coexpressing T cells that mainly produced IFNγ. Our data show that DCs rather than monocytes from sarcoidosis patients have the ability to activate and polarize T cells towards Th1 and Th17.1 cells. This study provides a useful in vitro tool to better understand the contribution of monocytes and DCs to T cell activation and immunopathology in sarcoidosis.
  •  
5.
  • Liu, Jielu, et al. (författare)
  • Monensin inhibits mast cell mediated airway contractions in human and guinea pig asthma models
  • 2022
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Asthma is a common respiratory disease associated with airway hyperresponsiveness (AHR), airway inflammation and mast cell (MC) accumulation in the lung. Monensin, an ionophoric antibiotic, has been shown to induce apoptosis of human MCs. The aim of this study was to define the effect of monensin on MC responses, e.g., antigen induced bronchoconstriction, and on asthmatic features in models of allergic asthma. Tracheal segments from house dust mite (HDM) extract sensitized guinea pigs were isolated and exposed to monensin, followed by histological staining to quantify MCs. Both guinea pig tracheal and human bronchi were used for pharmacological studies in tissue bath systems to investigate the monensin effect on tissue viability and antigen induced bronchoconstriction. Further, an HDM-induced guinea pig asthma model was utilized to investigate the effect of monensin on AHR and airway inflammation. Monensin decreased MC number, caused MC death, and blocked the HDM or anti-IgE induced bronchoconstriction in guinea pig and human airways. In the guinea pig asthma model, HDM-induced AHR, airway inflammation and MC hyperplasia could be inhibited by repeated administration of monensin. This study indicates that monensin is an effective tool to reduce MC number and MCs are crucial for the development of asthma-like features.
  •  
6.
  • Mishra, A, et al. (författare)
  • Diminishing benefits of urban living for children and adolescents' growth and development
  • 2023
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 615:7954, s. 874-883
  • Tidskriftsartikel (refereegranskat)abstract
    • Optimal growth and development in childhood and adolescence is crucial for lifelong health and well-being1–6. Here we used data from 2,325 population-based studies, with measurements of height and weight from 71 million participants, to report the height and body-mass index (BMI) of children and adolescents aged 5–19 years on the basis of rural and urban place of residence in 200 countries and territories from 1990 to 2020. In 1990, children and adolescents residing in cities were taller than their rural counterparts in all but a few high-income countries. By 2020, the urban height advantage became smaller in most countries, and in many high-income western countries it reversed into a small urban-based disadvantage. The exception was for boys in most countries in sub-Saharan Africa and in some countries in Oceania, south Asia and the region of central Asia, Middle East and north Africa. In these countries, successive cohorts of boys from rural places either did not gain height or possibly became shorter, and hence fell further behind their urban peers. The difference between the age-standardized mean BMI of children in urban and rural areas was <1.1 kg m–2 in the vast majority of countries. Within this small range, BMI increased slightly more in cities than in rural areas, except in south Asia, sub-Saharan Africa and some countries in central and eastern Europe. Our results show that in much of the world, the growth and developmental advantages of living in cities have diminished in the twenty-first century, whereas in much of sub-Saharan Africa they have amplified.
  •  
7.
  • Nie, Mu (författare)
  • The role of inflammatory cells in sarcoidosis and asthma
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Immuno-homeostasis refers to maintaining a delicate balance between immune responses and tolerance. It relies on the harmonious interplay of various inflammatory cells, including macrophages, monocytes, dendritic cells, T cells, mast cells, etc. These cells maintain immune surveillance and response mechanisms, ensuring effective defense against pathogens while preventing excessive inflammation, and minimizing tissue damage. The respiratory system faces unique challenges in maintaining immune homeostasis due to constant exposure to airborne particles, allergens, and pathogens. Disruption of respiratory immune homeostasis may lead to chronic inflammatory disorders such as sarcoidosis and asthma, leading to impaired lung function. This thesis delves into the role of inflammatory cells in the pathogenesis of pulmonary sarcoidosis and allergic asthma. The first part focuses on elucidating the distribution, transcriptional profiles, and functions of mononuclear phagocytes (MNPs) in pulmonary sarcoidosis. Analysis revealed an elevation of CD14+CD16+ monocytes/monocyte-derived cells in the blood and bronchoalveolar lavage cells of sarcoidosis patients. RNA sequencing revealed markedly pro-inflammatory profiles in MNPs from sarcoidosis patients compared to those from healthy controls. Particularly, monocytes/monocyte-derived cells exhibited heightened expression of genes associated with inflammation and TNF signaling. Notably, TNF production by pulmonary monocytes at diagnosis was predictive of patients at risk of developing severe disease (Paper Ⅰ). Furthermore, respiratory MNPs were found to induce potent pathogenic IFN-γ production by Th1 cells (Paper Ⅱ). These findings highlight the significant contribution of MNPs to sarcoidosis pathogenesis. The second part aimed to study the role of airway-infiltrating inflammatory cells in allergic asthma pathophysiology. This project hypothesized that airway inflammation in asthma causes phenotypic alterations of the resident mast cells and the airway smooth muscle cells. Firstly, monensin was identified as an effective approach to decreasing mast cell populations and alleviating mast cell-related antigen-induced bronchoconstriction in both guinea pigs and humans. This highlights the pivotal role of mast cell hyperplasia in the development of airway hyperresponsiveness and inflammation in allergic asthma (Paper Ⅲ). Additionally, by overcoming post-mortem bronchoconstriction in guinea pig small airways, the study reveals guinea pig intralobular bronchi closely resembling human respiratory features. Combining this newly established guinea pig intralobular bronchi model with the modified guinea pig asthma in vivo model, it was found that allergic airway inflammation amplified mast cell responses (Paper Ⅳ), providing further insights into the pathophysiology of allergic asthma.
  •  
8.
  •  
9.
  • Yu, Meng, et al. (författare)
  • Delayed generation of functional virus-specific circulating T follicular helper cells correlates with severe COVID-19
  • 2023
  • Ingår i: Nature Communications. - : NATURE PORTFOLIO. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Effective humoral immune responses require well-orchestrated B and T follicular helper (Tfh) cell interactions. Whether these interactions are impaired and associated with COVID-19 disease severity is unclear. Here, longitudinal blood samples across COVID-19 disease severity are analysed. We find that during acute infection SARS-CoV-2-specific circulating Tfh (cTfh) cells expand with disease severity. SARS-CoV-2-specific cTfh cell frequencies correlate with plasmablast frequencies and SARS-CoV-2 antibody titers, avidity and neutralization. Furthermore, cTfh cells but not other memory CD4 T cells, from severe patients better induce plasmablast differentiation and antibody production compared to cTfh cells from mild patients. However, virus-specific cTfh cell development is delayed in patients that display or later develop severe disease compared to those with mild disease, which correlates with delayed induction of high-avidity neutralizing antibodies. Our study suggests that impaired generation of functional virus-specific cTfh cells delays high-quality antibody production at an early stage, potentially enabling progression to severe disease. T follicular helper cells (Tfh) enhance antibody responses and can circulate or be resident in lymph nodes. Here the authors show that during acute SARS-CoV-2 infection, circulating Tfh cells correlate with antibody titres and plasmablast levels but in more severe COVID-19 cases, cTfh generation is delayed.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy