SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nissila A) "

Sökning: WFRF:(Nissila A)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Brorsson, Joakim, 1988, et al. (författare)
  • Efficient Calculation of the Lattice Thermal Conductivity by Atomistic Simulations with Ab Initio Accuracy
  • 2022
  • Ingår i: Advanced Theory and Simulations. - : Wiley. - 2513-0390. ; 5:2
  • Tidskriftsartikel (refereegranskat)abstract
    • High-order force constant expansions can provide accurate representations of the potential energy surface relevant to vibrational motion. They can be efficiently parametrized using quantum mechanical calculations and subsequently sampled at a fraction of the cost of the underlying reference calculations. Here, force constant expansions are combined via the hiphive package with GPU-accelerated molecular dynamics simulations via the GPUMD package to obtain an accurate, transferable, and efficient approach for sampling the dynamical properties of materials. The performance of this methodology is demonstrated by applying it both to materials with very low thermal conductivity (Ba8Ga16Ge30, SnSe) and a material with a relatively high lattice thermal conductivity (monolayer-MoS2). These cases cover both situations with weak (monolayer-MoS2, SnSe) and strong (Ba8Ga16Ge30) pho renormalization. The simulations also enable to access complementary information such as the spectral thermal conductivity, which allows to discriminate the contribution by different phonon modes while accounting for scattering to all orders. The software packages described here are made available to the scientific community as free and open-source software in order to encourage the more widespread use of these techniques as well as their evolution through continuous and collaborative development.
  •  
3.
  • Hashemi, A., et al. (författare)
  • Photoluminescence line shapes for color centers in silicon carbide from density functional theory calculations
  • 2021
  • Ingår i: Physical Review B. - 2469-9969 .- 2469-9950. ; 103:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Silicon carbide with optically and magnetically active point defects offers unique opportunities for quantum technology applications. Since interaction with these defects commonly happens through optical excitation and deexcitation, a complete understanding of their light-matter interaction in general and optical signatures in particular is crucial. Here, we employ quantum mechanical density functional theory calculations to investigate the photoluminescence line shapes of selected, experimentally observed color centers (including single vacancies, double vacancies, and vacancy-impurity pairs) in 4H-SiC. The analysis of zero-phonon lines as well as Huang-Rhys and Debye-Waller factors is accompanied by a detailed study of the underlying lattice vibrations. We show that the defect line shapes are governed by strong coupling to bulk phonons at lower energies and localized vibrational modes at higher energies. Generally, good agreement with the available experimental data is obtained, and thus we expect our theoretical work to be beneficial for the identification of defect signatures in the photoluminescence spectra and thereby advance the research in quantum photonics and quantum information processing.
  •  
4.
  • Buschmann, M. H., et al. (författare)
  • Correct interpretation of nanofluid convective heat transfer
  • 2018
  • Ingår i: International Journal of Thermal Sciences. - : Elsevier BV. - 1290-0729. ; 129, s. 504-531
  • Forskningsöversikt (refereegranskat)abstract
    • Engineers and scientist have a long tradition in trying to improve the thermophysical properties of convective heat carriers such as water and transformer oil. Technological developments of the last decades allow the dispersion of particle of sizes ranging between 10 and 100 nm in these liquids. In a large number of recent studies the resulting nanofluids have been reported to display anomalously high increase of convective heat transfer. The present study compiles experiments from five independent research teams investigating convective heat transfer in nanofluid flow in pipes, pipe with inserted twisted tape, annular counter flow heat exchanger, and coil and plate heat exchangers. The results of all these experiments unequivocally confirm that Newtonian nanofluid flow can be consistently characterized by employing Nusselt number correlations obtained for single-phase heat transfer liquids such as water when the correct thermophysical properties of the nanofluid are utilized. It is also shown that the heat transfer enhancement provided by nanofluids equals the increase in the thermal conductivity of the nanofluid as compared to the base fluid independent of the nanoparticle concentration or material. These results demonstrate that no anomalous phenomena are involved in thermal conduction and forced convection based heat transfer of nanofluids. The experiments are theoretically supported by a fundamental similarity analysis of nanoparticle motion in nanofluid flow.
  •  
5.
  • Buschmann, M. H., et al. (författare)
  • On the proper interpretation of nanofluid convective heat transfer
  • 2018
  • Ingår i: Proceeding: International Heat Transfer Conference 16. - 2377-424X. ; , s. 2855-2862
  • Konferensbidrag (refereegranskat)abstract
    • Technological developments of the last decades allow the production and the dispersion of particles of sizes ranging between 10 and 100 nm in liquids. In a large number of recent studies the resulting nanofluids have been reported to display anomalously high increase in convective heat transfer. The present study compiles experiments from five independent research teams investigating convective heat transfer in nanofluid flow in pipes (laminar and turbulent), pipe with inserted twisted tape, annular counter flow heat exchanger, and coil and plate heat exchangers. The results of all these experiments unequivocally confirm that Newtonian nanofluid flow can be consistently characterized by employing Nusselt number correlations obtained for single-phase heat transfer liquids such as water when the correct thermophysical properties of the nanofluid are utilized. It is also shown that the heat transfer enhancement provided by nanofluids equals the increase in the thermal conductivity of the nanofluid as compared to the base fluid independent of the nanoparticle concentration or material. These results demonstrate that no anomalous phenomena are involved in thermal conduction and forced convection based heat transfer of water based nanofluids. The experiments are theoretically supported by a fundamental similarity analysis of nanoparticle motion in nanofluid flow.
  •  
6.
  •  
7.
  • Laaksonen, Katri, et al. (författare)
  • Nanoparticles of TiO2 and VO2 in dielectric media : Conditions for low optical scattering, and comparison between effective medium and four-flux theories
  • 2014
  • Ingår i: Solar Energy Materials and Solar Cells. - : Saunders Elsevier. - 0927-0248 .- 1879-3398. ; 130:SI, s. 132-137
  • Tidskriftsartikel (refereegranskat)abstract
    • Spectral transmittance and reflectance in the 300 to 2500 nm solar-optical wavelength range were calculated for nanoparticles of titanium dioxide and vanadium dioxide with radii between 5 and 100 nm embedded in transparent dielectric media. Both of the materials are of large importance in green nanotechnologies: thus TiO2 is a photocatalyst that can be applied as a porous film or a nanoparticle composite on indoor or outdoor surfaces for environmental remediation, and VO2 is a thermochromic material with applications to energy-efficient fenestration. The optical properties, including scattering, of the nanoparticle composites were computed from the Maxwell–Garnett effective-medium theory as well as from a four-flux radiative transfer model. Predictions from these theories approach one another in the limit of small particles and in the absence of optical interference. Effects of light scattering can be modeled only by the four-flux theory, though. We found that nanoparticle radii should be less than ~20 nm in order to avoid pronounced light scattering.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy