SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nogami T) "

Sökning: WFRF:(Nogami T)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Morokuma, Tomoki, et al. (författare)
  • OISTER optical and near-infrared monitoring observations of peculiar radio-loud active galactic nucleus SDSSJ110006.07+442144.3
  • 2017
  • Ingår i: Nippon Tenmon Gakkai obun kenkyu hokoku. - : Oxford University Press (OUP). - 0004-6264. ; 69:5
  • Tidskriftsartikel (refereegranskat)abstract
    • We present monitoring campaign observations at optical and near-infrared (NIR) wavelengths for a radio-loud active galactic nucleus (AGN) at z = 0.840, SDSSJ110006.07+442144.3 (hereafter, J1100+4421), which was identified during a flare phase in late 2014 February. The campaigns consist of three intensive observing runs from the discovery to 2015 March, mostly within the scheme of the OISTER collaboration. Optical-NIR light curves and simultaneous spectral energy distributions (SEDs) are obtained. Our measurements show the strongest brightening in 2015 March. We found that the optical-NIR SEDs of J1100+4421 show an almost steady shape despite the large and rapid intranight variability. This constant SED shape is confirmed to extend to similar to 5 mu m in the observed frame using the archival WISE data. Given the lack of absorption lines and the steep power-law spectrum of alpha(upsilon) similar to -1.4, where f(v) proportional to v(alpha upsilon), synchrotron radiation by a relativistic jet with no or small contributions from the host galaxy and the accretion disk seemsmost plausible as an optical-NIR emission mechanism. The steep optical-NIR spectral shape and the large amplitude of variability are consistent with this object being a low.peak jet-dominated AGN. In addition, sub-arcsecond resolution optical imaging data taken with Subaru Hyper Suprime-Cam does not show a clear extended component and the spatial scales are significantly smaller than the large extensions detected at radio wavelengths. The optical spectrum of a possible faint companion galaxy does not show any emission lines at the same redshift, and hence a merging hypothesis for this AGN-related activity is not supported by our observations.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy