SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Noterdaeme J. M) "

Sökning: WFRF:(Noterdaeme J. M)

  • Resultat 1-25 av 38
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Murari, A., et al. (författare)
  • A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors
  • 2024
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices.
  •  
2.
  • Joffrin, E., et al. (författare)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Stroth, U., et al. (författare)
  • Progress from ASDEX Upgrade experiments in preparing the physics basis of ITER operation and DEMO scenario development
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • An overview of recent results obtained at the tokamak ASDEX Upgrade (AUG) is given. A work flow for predictive profile modelling of AUG discharges was established which is able to reproduce experimental H-mode plasma profiles based on engineering parameters only. In the plasma center, theoretical predictions on plasma current redistribution by a dynamo effect were confirmed experimentally. For core transport, the stabilizing effect of fast ion distributions on turbulent transport is shown to be important to explain the core isotope effect and improves the description of hollow low-Z impurity profiles. The L-H power threshold of hydrogen plasmas is not affected by small helium admixtures and it increases continuously from the deuterium to the hydrogen level when the hydrogen concentration is raised from 0 to 100%. One focus of recent campaigns was the search for a fusion relevant integrated plasma scenario without large edge localised modes (ELMs). Results from six different ELM-free confinement regimes are compared with respect to reactor relevance: ELM suppression by magnetic perturbation coils could be attributed to toroidally asymmetric turbulent fluctuations in the vicinity of the separatrix. Stable improved confinement mode plasma phases with a detached inner divertor were obtained using a feedback control of the plasma β. The enhanced D α H-mode regime was extended to higher heating power by feedback controlled radiative cooling with argon. The quasi-coherent exhaust regime was developed into an integrated scenario at high heating power and energy confinement, with a detached divertor and without large ELMs. Small ELMs close to the separatrix lead to peeling-ballooning stability and quasi continuous power exhaust. Helium beam density fluctuation measurements confirm that transport close to the separatrix is important to achieve the different ELM-free regimes. Based on separatrix plasma parameters and interchange-drift-Alfvén turbulence, an analytic model was derived that reproduces the experimentally found important operational boundaries of the density limit and between L- and H-mode confinement. Feedback control for the X-point radiator (XPR) position was established as an important element for divertor detachment control. Stable and detached ELM-free phases with H-mode confinement quality were obtained when the XPR was moved 10 cm above the X-point. Investigations of the plasma in the future flexible snow-flake divertor of AUG by means of first SOLPS-ITER simulations with drifts activated predict beneficial detachment properties and the activation of an additional strike point by the drifts.
  •  
7.
  • Meyer, H.F., et al. (författare)
  • Overview of physics studies on ASDEX Upgrade
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • The ASDEX Upgrade (AUG) programme, jointly run with the EUROfusion MST1 task force, continues to significantly enhance the physics base of ITER and DEMO. Here, the full tungsten wall is a key asset for extrapolating to future devices. The high overall heating power, flexible heating mix and comprehensive diagnostic set allows studies ranging from mimicking the scrape-off-layer and divertor conditions of ITER and DEMO at high density to fully non-inductive operation (q 95 = 5.5, ) at low density. Higher installed electron cyclotron resonance heating power 6 MW, new diagnostics and improved analysis techniques have further enhanced the capabilities of AUG. Stable high-density H-modes with MW m-1 with fully detached strike-points have been demonstrated. The ballooning instability close to the separatrix has been identified as a potential cause leading to the H-mode density limit and is also found to play an important role for the access to small edge-localized modes (ELMs). Density limit disruptions have been successfully avoided using a path-oriented approach to disruption handling and progress has been made in understanding the dissipation and avoidance of runaway electron beams. ELM suppression with resonant magnetic perturbations is now routinely achieved reaching transiently . This gives new insight into the field penetration physics, in particular with respect to plasma flows. Modelling agrees well with plasma response measurements and a helically localised ballooning structure observed prior to the ELM is evidence for the changed edge stability due to the magnetic perturbations. The impact of 3D perturbations on heat load patterns and fast-ion losses have been further elaborated. Progress has also been made in understanding the ELM cycle itself. Here, new fast measurements of and E r allow for inter ELM transport analysis confirming that E r is dominated by the diamagnetic term even for fast timescales. New analysis techniques allow detailed comparison of the ELM crash and are in good agreement with nonlinear MHD modelling. The observation of accelerated ions during the ELM crash can be seen as evidence for the reconnection during the ELM. As type-I ELMs (even mitigated) are likely not a viable operational regime in DEMO studies of 'natural' no ELM regimes have been extended. Stable I-modes up to have been characterised using -feedback. Core physics has been advanced by more detailed characterisation of the turbulence with new measurements such as the eddy tilt angle - measured for the first time - or the cross-phase angle of and fluctuations. These new data put strong constraints on gyro-kinetic turbulence modelling. In addition, carefully executed studies in different main species (H, D and He) and with different heating mixes highlight the importance of the collisional energy exchange for interpreting energy confinement. A new regime with a hollow profile now gives access to regimes mimicking aspects of burning plasma conditions and lead to nonlinear interactions of energetic particle modes despite the sub-Alfvénic beam energy. This will help to validate the fast-ion codes for predicting ITER and DEMO.
  •  
8.
  • Marconi, A., et al. (författare)
  • ANDES, the high resolution spectrograph for the ELT : science case, baseline design and path to construction
  • 2022
  • Ingår i: GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY IX. - : SPIE - International Society for Optical Engineering. - 9781510653504 - 9781510653498
  • Konferensbidrag (refereegranskat)abstract
    • The first generation of ELT instruments includes an optical-infrared high resolution spectrograph, indicated as ELT-HIRES and recently christened ANDES (ArmazoNes high Dispersion Echelle Spectrograph). ANDES consists of three fibre-fed spectrographs (UBV, RIZ, YJH) providing a spectral resolution of similar to 100,000 with a minimum simultaneous wavelength coverage of 0.4-1.8 mu m with the goal of extending it to 0.35-2.4 mu m with the addition of a K band spectrograph. It operates both in seeing- and diffraction-limited conditions and the fibre-feeding allows several, interchangeable observing modes including a single conjugated adaptive optics module and a small diffraction-limited integral field unit in the NIR. Its modularity will ensure that ANDES can be placed entirely on the ELT Nasmyth platform, if enough mass and volume is available, or partly in the Coude room. ANDES has a wide range of groundbreaking science cases spanning nearly all areas of research in astrophysics and even fundamental physics. Among the top science cases there are the detection of biosignatures from exoplanet atmospheres, finding the fingerprints of the first generation of stars, tests on the stability of Nature's fundamental couplings, and the direct detection of the cosmic acceleration. The ANDES project is carried forward by a large international consortium, composed of 35 Institutes from 13 countries, forming a team of more than 200 scientists and engineers which represent the majority of the scientific and technical expertise in the field among ESO member states.
  •  
9.
  • Abolfathi, Bela, et al. (författare)
  • The Fourteenth Data Release of the Sloan Digital Sky Survey : First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment
  • 2018
  • Ingår i: Astrophysical Journal Supplement Series. - : IOP Publishing Ltd. - 0067-0049 .- 1538-4365. ; 235:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014-2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V.
  •  
10.
  • Ongena, J., et al. (författare)
  • Overview of recent results on Heating and Current Drive in JET
  • 2007
  • Ingår i: RADIO FREQUENCY POWER IN PLASMAS. - : AIP. ; , s. 249-256
  • Konferensbidrag (refereegranskat)abstract
    • Recent progress on heating and current drive on JET is reported. Topics discussed are: high power coupling of ICRF/LH at ITER relevant antenna/launcher-separatrix distances, succesfull demonstration of 3 dB couplers for ELM tolerance of the ICRF system, influence of ICRF on LH operation, rotation studies in plasma without external momentum with standard and enhanced JET toriodal field ripple, studies of different ICRF heating schemes and of NTM avoidance schemes using Ion Cyclotron Current Drive. A brief outlook on future plans for experiments at JET is given.
  •  
11.
  • Mantsinen, M. J., et al. (författare)
  • Bulk Ion Heating with ICRF Waves in Tokamaks
  • 2015
  • Ingår i: RADIOFREQUENCY POWER IN PLASMAS. - : American Institute of Physics (AIP). - 9780735413368
  • Konferensbidrag (refereegranskat)abstract
    • Heating with ICRF waves is a well-established method on present-day tokamaks and one of the heating systems foreseen for ITER. However, further work is still needed to test and optimize its performance in fusion devices with metallic high-Z plasma facing components (PFCs) in preparation of ITER and DEMO operation. This is of particular importance for the bulk ion heating capabilities of ICRF waves. Efficient bulk ion heating with the standard ITER ICRF scheme, i.e. the second harmonic heating of tritium with or without He-3 minority, was demonstrated in experiments carried out in deuterium-tritium plasmas on JET and TFTR and is confirmed by ICRF modelling. This paper focuses on recent experiments with He-3 minority heating for bulk ion heating on the ASDEX Upgrade (AUG) tokamak with ITER-relevant all-tungsten PFCs. An increase of 80% in the central ion temperature T-i from 3 to 5.5 keV was achieved when 3 MW of ICRF power tuned to the central He-3 ion cyclotron resonance was added to 4.5 MW of deuterium NBI. The radial gradient of the Ti profile reached locally values up to about 50 keV/m and the normalized logarithmic ion temperature gradients R/L-Ti of about 20, which are unusually large for AUG plasmas. The large changes in the Ti profiles were accompanied by significant changes in measured plasma toroidal rotation, plasma impurity profiles and MHD activity, which indicate concomitant changes in plasma properties with the application of ICRF waves. When the He-3 concentration was increased above the optimum range for bulk ion heating, a weaker peaking of the ion temperature profile was observed, in line with theoretical expectations.
  •  
12.
  • Lamalle, P.U, et al. (författare)
  • Expanding the operating space of ICRF on JET with a view to ITER
  • 2006
  • Ingår i: Nucl. Fusion. ; 46, s. 391-
  • Tidskriftsartikel (refereegranskat)abstract
    • Mercury (Hg) has been used for millennia in many applications, primarily in artisanal mining and as an electrode in the chlor–alkali industry. It is anthropogenically emitted as a pollutant from coal fired power plants and naturally emitted, primarily from volcanoes. Its unique chemical characteristics enable global atmospheric transport and it is deposited after various processes, ultimately ending up in one of its final sinks, such as incorporated into deep sediment or bioaccumulated, primarily in the marine environment. All forms of Hg have been established as toxic, and there have been no noted biological benefits from the metal.Throughout time, there have been notable incidents of Hg intoxication documented, and the negative health effects have been documented to those chronically or acutely exposed. Today, exposure to Hg is largely diet or occupationally dependent, however, many are exposed to Hg from their amalgam fillings. This paper puts a tentative monetary value on Hg polluted food sources in the Arctic, where local, significant pollution sources are limited, and relates this to costs for strategies avoiding Hg pollution and to remediation costs of contaminated sites in Sweden and Japan. The case studies are compiled to help policy makers and the public to evaluate whether the benefits to the global environment from banning Hg and limiting its initial emission outweigh the benefits from its continued use or lack of control of Hg emissions. The cases we studied are relevant for point pollution sources globally and their remediation costs ranged between 2500 and 1.1 million US$ kg−1 Hg isolated from the biosphere. Therefore, regulations discontinuing mercury uses combined with extensive flue gas cleaning for all power plants and waste incinerators is cost effective.
  •  
13.
  • Mantsinen, M. J., et al. (författare)
  • Localized bulk electron heating with ICRF mode conversion in the JET tokamak
  • 2004
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 44:1, s. 33-46
  • Tidskriftsartikel (refereegranskat)abstract
    • Ion cyclotron resonance frequencies (ICRF) mode conversion has been developed for localized on-axis and off-axis bulk electron heating on the JET tokamak. The fast magnetosonic waves launched from the low-field side ICRF antennas are mode-converted to short-wavelength waves on the high-field side of the He-3 ion cyclotron resonance layer in D and He-4 plasmas and subsequently damped on the bulk electrons. The resulting electron power deposition, measured using ICRF power modulation, is narrow with a typical full-width at half-maximum of approximate to30 cm (i.e. about 30% of the minor radius) and the total deposited power to electrons comprises at least up to 80% of the applied ICRF power. The ICRF mode conversion power deposition has been kept constant using He-3 bleed throughout the ICRF phase with a typical duration of 4-6 s, i.e. 15-40 energy confinement times. Using waves propagating in the counter-current direction minimizes competing ion damping in the presence of co-injected deuterium beam ions.
  •  
14.
  • Lamalle, P. U., et al. (författare)
  • Expanding the operating space of ICRF on JET with a view to ITER
  • 2006
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 46:2, s. 391-400
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper reports on ITER-relevant ion cyclotron resonance frequency (ICRF) physics investigated on JET in 2003 and early 2004. Minority heating of helium three in hydrogen plasmas-(He-3)H-was systematically explored by varying the 3 He concentration and the toroidal phasing of the antenna arrays. The best heating performance (a maximum electron temperature of 6.2 keV with 5 MW of ICRF power) was obtained with a preferential wave launch in the direction of the plasma current. A clear experimental demonstration was made of the sharp and reproducible transition to the mode conversion heating regime when the 3 He concentration increased above similar to 2%. In the latter regime the best heating performance (a maximum electron temperature of 8 keV with 5 MW of ICRF power) was achieved with dipole array phasing, i.e. a symmetric antenna power spectrum. Minority heating of deuterium in hydrogen plasmas-(D)H-was also investigated but was found inaccessible because this scenario is too sensitive to impurity ions with Z/A = 1/2 such as C6+, small amounts of which directly lead into the mode conversion regime. Minority heating of up to 3% of tritium in deuterium plasmas was systematically investigated during the JET trace tritium experimental campaign (TTE). This required operating JET at its highest possible magnetic field (3.9 to 4 T) and the ICRF system at its lowest frequency (23 MHz). The interest of this scenario for ICRF heating at these low concentrations and its efficiency at boosting the suprathermal neutron yield were confirmed, and the measured neutron and gammay ray spectra permit interesting comparisons with advanced ICRF code simulations. Investigations of finite Larmor radius effects on the RF-induced high-energy tails during second harmonic (omega = 2 omega(c)) heating of a hydrogen minority in D plasmas clearly demonstrated a strong decrease in the RF diffusion coefficient at proton energies similar to 1 MeV in agreement with theoretical expectations. Fast wave heating and current drive experiments in deuterium plasmas showed effective direct electron heating with dipole phasing of the antennas, but only small changes of the central plasma current density were observed with the directive phasings, in particular at low single pass damping. New investigations of the heating efficiency of ICRF antennas confirmed its strong dependence on the parallel wavenumber spectrum. Advances in topics of a more technological nature are also summarized: ELM studies using fast RF measurements, the successful experimental demonstration of a new ELM-tolerant antenna matching scheme and technical enhancements planned on the JET ICRF system for 2006, they being equally strongly driven by the preparation for ITER.
  •  
15.
  •  
16.
  • Mantsinen, M. J., et al. (författare)
  • Modification of sawtooth oscillations with ICRF waves in the JET tokamak
  • 2007
  • Ingår i: RADIO FREQUENCY POWER IN PLASMAS. - : AIP. - 9780735404441 ; , s. 35-42
  • Konferensbidrag (refereegranskat)abstract
    • Methods of modifying sawtooth oscillations using waves in the ion cyclotron range of frequencies (ICRF) in the JET tokamak are presented. Examples of sawtooth stabilization by ICRF-accelerated high-energy ions are shown, including experiments with ICRF-acceleration of 4He-beam ions to simulate the effects of fusion born alpha particles. With high power ICRF heating in low-density plasmas, fast ion stabilization of sawteeth is lost and a new type of small-period and small-amplitude sawteeth appears. ICRF-induced radial pinch with toroidally asymmetric waves is found to be useful in affecting the radial profile of the ICRF-driven fast ion populations and thereby their influence on sawteeth. Ion cyclotron current drive (ICCD) applied close to the sawtooth inversion radius is effective in modifying the sawtooth period. The latest achievements include the successful application of ICCD to shorten the fast-ion-induced long-period sawteeth and thereby avoid triggering of neoclassical tearing modes (NTMs).
  •  
17.
  • Noterdaeme, J. M., et al. (författare)
  • Heating, current drive and energetic particle studies on JET in preparation of ITER operation
  • 2003
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 43:3, s. 202-209
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper summarizes the recent work on JET in the three areas of heating, current drive and energetic particles. The achievements have extended the possibilities of JET, have a direct connection to ITER operation and provide new and interesting physics. Toroidal rotation profiles of plasmas heated far off axis with little or no refuelling or momentum input are hollow with only small differences on whether the power deposition is located on the low field side or on the high field side. With LH current drive the magnetic shear was varied from slightly positive to negative. The improved coupling (through the use of plasma shaping and CD4) allowed up to 3.4 MW of PLH in internal transport barrier (ITB) plasmas with more than 15 MW of combined NBI and ICRF heating. The q-profile with negative magnetic shear and the ITB could be maintained for the duration of the high heating pulse (8 s). Fast ions have been produced in JET with ICRF to simulate alpha particles: by using third harmonic He-4 heating, beam injected He-4 at 120 kV were accelerated to energies above 2 MeV taking advantage of the unique capability of JET to use NBI with 4 He and to confine MeV class ions. ICRF heating was used to replicate the dynamics of alpha heating and the control of an equivalent Q = 10 `burn' was simulated.
  •  
18.
  • Zerbi, F. M., et al. (författare)
  • HIRES : The High Resolution Spectrograph for E-ELT
  • 2014
  • Ingår i: Ground-based and Airborne Instrumentation for Astronomy V. - : SPIE. - 9780819496157
  • Konferensbidrag (refereegranskat)abstract
    • The current instrumentation plan for the E-ELT foresees a High Resolution Spectrograph conventionally indicated as HIRES. Shaped on the study of extra-solar planet atmospheres, Pop-III stars and fundamental physical constants, HIRES is intended to embed observing modes at high-resolution (up to R=150000) and large spectral range (from the blue limit to the K band) useful for a large suite of science cases that can exclusively be tackled by the E-ELT. We present in this paper the solution for HIRES envisaged by the "HIRES initiative", the international collaboration established in 2013 to pursue a HIRES on E-ELT.
  •  
19.
  • Eriksson, L. G., et al. (författare)
  • On ion cyclotron current drive for sawtooth control
  • 2006
  • Ingår i: Nuclear Fusion. - 0029-5515 .- 1741-4326. ; 46:10, s. S951-S964
  • Tidskriftsartikel (refereegranskat)abstract
    • Experiments using ion cyclotron current drive (ICCD) to control sawteeth are presented. In particular, discharges demonstrating shortening of fast ion induced long sawteeth reported in (Eriksson et al 2004 Phys. Rev. Lett. 92 235004) by ICCD have been analysed in detail. Numerical simulations of the ICCD driven currents are shown to be consistent with the experimental observations. They support the hypothesis that an increase in the magnetic shear, due to the driven current, at the surface where the safety factor is unity was the critical factor for the shortening of the sawteeth. In view of the potential utility of ICCD, the mechanisms for the current drive have been further investigated experimentally. This includes the influence of the averaged energy of the resonating ions carrying the current and the spectrum of the launched waves. The results of these experiments are discussed in the light of theoretical considerations.
  •  
20.
  • Hellsten, Torbjörn, et al. (författare)
  • Fast wave current drive in JET ITB-plasma
  • 2005
  • Ingår i: AIP Conference Proceedings. - : AIP. - 0094-243X. ; , s. 273-278
  • Konferensbidrag (refereegranskat)abstract
    • Fast wave current drive has been performed in JET plasmas with internal transport barriers, ITBs, and strongly reversed magnetic shear. Although the current drive efficiency of the power absorbed on the electrons is fairly high, only small effects are seen in the central current density. The main reasons are the parasitic absorption of RF power, the strongly inductive nature of the plasma and the interplay between the fast wave driven current and bootstrap current. The direct electron heating in the FWCD experiments is found to be strongly degraded compared to that with the dipole phasing.
  •  
21.
  • Mantsinen, M. J., et al. (författare)
  • Alpha-tail production with ion-cyclotron-resonance heating of He-4-beam ions in JET plasmas
  • 2002
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 88:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Third-harmonic ion-cyclotron-resonance heating of He-4-beam ions has produced for the first time on the JET tokamak high-energy populations of He-4 ions to simulate 3.5 MeV fusion-born alpha (alpha) particles. Acceleration of He-4 ions to the MeV energy range is confirmed by gamma-ray emission from the nuclear reaction Be-9(alpha, ngamma) C-12 and excitation of Alfven eigenmodes. Concomitant electron heating and sawtooth stabilization are observed. The scheme could be used in next-step tokamaks to gain information on trapped alpha particles and to test a diagnostics in the early nonactivated phase of operation.
  •  
22.
  • Mayoral, M. L., et al. (författare)
  • Hydrogen plasmas with ICRF inverted minority and mode conversion heating regimes in the JET tokamak
  • 2006
  • Ingår i: Nuclear Fusion. - 0029-5515 .- 1741-4326. ; 46:7, s. S550-S563
  • Tidskriftsartikel (refereegranskat)abstract
    • During the initial operation of the International Thermonuclear Experimental Reactor (ITER), it is envisaged that activation will be minimized by using hydrogen (H) plasmas where the reference ion cyclotron resonance frequency (ICRF) heating scenarios rely on minority species such as helium (He-3) or deuterium (D). This paper firstly describes experiments dedicated to the study of He-3 heating in H plasmas with a sequence of discharges in which 5 MW of ICRF power was reliably coupled and the He-3 concentration, controlled in real-time, was varied from below 1% up to 10%. The minority heating (MH) regime was observed at low concentrations (up to 2%). Energetic tails in the He-3 ion distributions were observed with effective temperatures up to 300 keV and bulk electron temperatures up to 6 keV. At around 2%, a sudden transition was reproducibly observed to the mode conversion regime, in which the ICRF fast wave couples to short wavelength modes, leading to efficient direct electron heating and bulk electron temperatures up to 8 keV. Secondly, experiments performed to study D minority ion heating in H plasmas are presented. This MH scheme proved much more difficult since modest quantities of carbon
  •  
23.
  • Mayoral, M L, et al. (författare)
  • ICRF heating for the non-activated phase of ITER : From inverted minority to mode conversion regime
  • 2005
  • Ingår i: Radio Frequency Power in Plasmas. ; , s. 122-129
  • Konferensbidrag (refereegranskat)abstract
    • In the initial phase of ITER H plasmas will be used in order to avoid activating the machine. The reference ICRF heating scenarios rely on minority species such as Helium (3 He) or deuterium (D). These schemes' distinctive feature comes from the presence of the fast magnetosonic wave ion-ion hybrid resonance/cut-off pair, between the antennas and the minority cyclotron layer. In order to document these unusual heating schemes, ICRF experiments were carried out recently on JET. First, the use of He-3 ions in H plasmas was investigated with a sequence of discharges in which 5 MW of ICRF power was coupled to the plasma and the 3 He concentration was varied from below 1% up to 10%. The inverted minority heating regime was observed at low concentrations (up to similar to 2%). Energetic tails in the 3 He distribution were observed with effective temperatures up to 300 keV and central electron temperatures up to 6 keV. At around 2%, a sudden transition was reproducibly observed to the mode conversion regime, in which the ICRF fast wave couples to short wavelength modes, leading to efficient direct electron heating and central electron temperature up to 8 keV. All these experiments systematically used power modulation techniques to assess the radial profiles of the wave absorption by the electrons. Secondly, experiments to study the ICRF heating of D minority ions in H were performed. This heating scheme proved much more difficult since modest quantities of C6+ impurity, which has the same Z/A ratio than die D minority ions, led us directly into the mode conversion regime. This effect preventing any absorption by D ions at minority cyclotron layer, could make die (D)H scenario not suitable for the non-active phase of ITER.
  •  
24.
  • Santala, M. I. K., et al. (författare)
  • Proton-triton nuclear reaction in ICRF heated plasmas in JET
  • 2006
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 48:8, s. 1233-1253
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast protons can react with tritons in an endothermic nuclear reaction which can act as a source of neutrons in magnetically confined fusion plasmas. We have performed an experiment to systematically study this reaction in low tritium concentration (approximate to 1%) plasmas in the Joint European Torus. A linear dependence is found between excess neutron rate and tritium concentration when the DT fusion rate is low. We discuss the properties of the neutron emission, including anisotropy, from the proton-triton reaction in a fusion reactor environment and derive simple models for the calculation of the neutron yield from this reaction in terms of tritium density, fast ion temperature and fast ion energy content.
  •  
25.
  • Eriksson, L-G, et al. (författare)
  • Destabilization of fast-ion-induced long sawteeth by localized current drive in the JET tokamak.
  • 2004
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 92:23
  • Tidskriftsartikel (refereegranskat)abstract
    • In a tokamak fusion reactor the energetic alpha particles will transiently stabilize the magnetohydrodynamic activity causing sawtooth oscillations. The crash events terminating long sawtooth free periods can provide seed islands for neoclassical tearing modes [Phys. Rev. Lett. 88, 105001 (2002)]]. To shorten the sawtooth periods localized current drive near the q=1 surface is a possibility. This Letter provides the first experimental evidence for the effectiveness of this method in the different physics regime associated with fast-ion-induced long sawteeth on the JET tokamak.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 38

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy