SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(O'neill Alex J.) "

Sökning: WFRF:(O'neill Alex J.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Niemi, MEK, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  • Clark, Andrew G., et al. (författare)
  • Evolution of genes and genomes on the Drosophila phylogeny
  • 2007
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 450:7167, s. 203-218
  • Tidskriftsartikel (refereegranskat)abstract
    • Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.
  •  
3.
  • Menkveld, Albert J., et al. (författare)
  • Nonstandard Errors
  • 2024
  • Ingår i: JOURNAL OF FINANCE. - : Wiley-Blackwell. - 0022-1082 .- 1540-6261. ; 79:3, s. 2339-2390
  • Tidskriftsartikel (refereegranskat)abstract
    • In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty-nonstandard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for more reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants.
  •  
4.
  • Gallagher, Laura A., et al. (författare)
  • Impaired Alanine Transport or Exposure to D-Cycloserine Increases the Susceptibility of MRSA to beta-lactam Antibiotics
  • 2020
  • Ingår i: Journal of Infectious Diseases. - : OXFORD UNIV PRESS INC. - 0022-1899 .- 1537-6613. ; 221:6, s. 1006-1016
  • Tidskriftsartikel (refereegranskat)abstract
    • Prolonging the clinical effectiveness of beta-lactams, which remain first-line antibiotics for many infections, is an important part of efforts to address antimicrobial resistance. We report here that inactivation of the predicted D-cycloserine (DCS) transporter gene cycA resensitized methicillin-resistant Staphylococcus aureus (MRSA) to beta-lactam antibiotics. The cycA mutation also resulted in hypersusceptibility to DCS, an alanine analogue antibiotic that inhibits alanine racemase and D-alanine ligase required for D-alanine incorporation into cell wall peptidoglycan. Alanine transport was impaired in the cycA mutant, and this correlated with increased susceptibility to oxacillin and DCS. The cycA mutation or exposure to DCS were both associated with the accumulation of muropeptides with tripeptide stems lacking the terminal D-ala-D-ala and reduced peptidoglycan cross-linking, prompting us to investigate synergism between beta-lactams and DCS. DCS resensitized MRSA to beta-lactams in vitro and significantly enhanced MRSA eradication by oxacillin in a mouse bacteremia model. These findings reveal alanine transport as a new therapeutic target to enhance the susceptibility of MRSA to beta-lactam antibiotics.
  •  
5.
  • Crowe-McAuliffe, Caillan, et al. (författare)
  • Structural basis of ABCF-mediated resistance to pleuromutilin, lincosamide, and streptogramin A antibiotics in Gram-positive pathogens
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Target protection proteins confer resistance to the host organism by directly binding to the antibiotic target. One class of such proteins are the antibiotic resistance (ARE) ATP-binding cassette (ABC) proteins of the F-subtype (ARE-ABCFs), which are widely distributed throughout Gram-positive bacteria and bind the ribosome to alleviate translational inhibition from antibiotics that target the large ribosomal subunit. Here, we present single-particle cryo-EM structures of ARE-ABCF-ribosome complexes from three Gram-positive pathogens: Enterococcus faecalis LsaA, Staphylococcus haemolyticus VgaALC and Listeria monocytogenes VgaL. Supported by extensive mutagenesis analysis, these structures enable a general model for antibiotic resistance mediated by these ARE-ABCFs to be proposed. In this model, ABCF binding to the antibiotic-stalled ribosome mediates antibiotic release via mechanistically diverse long-range conformational relays that converge on a few conserved ribosomal RNA nucleotides located at the peptidyltransferase center. These insights are important for the future development of antibiotics that overcome such target protection resistance mechanisms.
  •  
6.
  •  
7.
  • Wilson, Daniel N., et al. (författare)
  • Target protection as a key antibiotic resistance mechanism
  • 2020
  • Ingår i: Nature Reviews Microbiology. - : Nature Publishing Group. - 1740-1526 .- 1740-1534. ; 18:11, s. 637-648
  • Forskningsöversikt (refereegranskat)abstract
    • Antibiotic resistance is mediated through several distinct mechanisms, most of which are relatively well understood and the clinical importance of which has long been recognized. Until very recently, neither of these statements was readily applicable to the class of resistance mechanism known as target protection, a phenomenon whereby a resistance protein physically associates with an antibiotic target to rescue it from antibiotic-mediated inhibition. In this Review, we summarize recent progress in understanding the nature and importance of target protection. In particular, we describe the molecular basis of the known target protection systems, emphasizing that target protection does not involve a single, uniform mechanism but is instead brought about in several mechanistically distinct ways.
  •  
8.
  • Yokoyama, Maho, et al. (författare)
  • Epistasis analysis uncovers hidden antibiotic resistance-associated fitness costs hampering the evolution of MRSA
  • 2018
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1474-7596 .- 1474-760X. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Fitness costs imposed on bacteria by antibiotic resistance mechanisms are believed to hamper their dissemination. The scale of these costs is highly variable. Some, including resistance of Staphylococcus aureus to the clinically important antibiotic mupirocin, have been reported as being cost-free, which suggests that there are few barriers preventing their global spread. However, this is not supported by surveillance data in healthy communities, which indicate that this resistance mechanism is relatively unsuccessful. Results: Epistasis analysis on two collections of MRSA provides an explanation for this discord, where the mupirocin resistance-conferring mutation of the ileS gene appears to affect the levels of toxins produced by S. aureus when combined with specific polymorphisms at other loci. Proteomic analysis demonstrates that the activity of the secretory apparatus of the PSM family of toxins is affected by mupirocin resistance. As an energetically costly activity, this reduction in toxicity masks the fitness costs associated with this resistance mutation, a cost that becomes apparent when toxin production becomes necessary. This hidden fitness cost provides a likely explanation for why this mupirocin-resistance mechanism is not more prevalent, given the widespread use of this antibiotic. Conclusions: With dwindling pools of antibiotics available for use, information on the fitness consequences of the acquisition of resistance may need to be considered when designing antibiotic prescribing policies. However, this study suggests there are levels of depth that we do not understand, and that holistic, surveillance and functional genomics approaches are required to gain this crucial information.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy