SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Olbrich M.) "

Sökning: WFRF:(Olbrich M.)

  • Resultat 1-19 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Graauw, Th., et al. (författare)
  • The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI)
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L6-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: This paper describes the Heterodyne Instrument for the Far-Infrared (HIFI) that was launched onboard ESA's Herschel Space Observatory in May 2009. Methods: The instrument is a set of 7 heterodyne receivers that are electronically tuneable, covering 480-1250 GHz with SIS mixers and the 1410-1910 GHz range with hot electron bolometer (HEB) mixers. The local oscillator (LO) subsystem comprises a Ka-band synthesizer followed by 14 chains of frequency multipliers and 2 chains for each frequency band. A pair of auto-correlators and a pair of acousto-optical spectrometers process the two IF signals from the dual-polarization, single-pixel front-ends to provide instantaneous frequency coverage of 2 × 4 GHz, with a set of resolutions (125 kHz to 1 MHz) that are better than 0.1 km s-1. Results: After a successful qualification and a pre-launch TB/TV test program, the flight instrument is now in-orbit and completed successfully the commissioning and performance verification phase. The in-orbit performance of the receivers matches the pre-launch sensitivities. We also report on the in-orbit performance of the receivers and some first results of HIFI's operations. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
  •  
2.
  • Oikonomou, Vasileios, et al. (författare)
  • The Role of Interferon-γ in Autoimmune Polyendocrine Syndrome Type 1.
  • 2024
  • Ingår i: The New England journal of medicine. - 1533-4406. ; 390:20, s. 1873-1884
  • Tidskriftsartikel (refereegranskat)abstract
    • Autoimmune polyendocrine syndrome type 1 (APS-1) is a life-threatening, autosomal recessive syndrome caused by autoimmune regulator (AIRE) deficiency. In APS-1, self-reactive T cells escape thymic negative selection, infiltrate organs, and drive autoimmune injury. The effector mechanisms governing T-cell-mediated damage in APS-1 remain poorly understood.We examined whether APS-1 could be classified as a disease mediated by interferon-γ. We first assessed patients with APS-1 who were participating in a prospective natural history study and evaluated mRNA and protein expression in blood and tissues. We then examined the pathogenic role of interferon-γ using Aire-/-Ifng-/- mice and Aire-/- mice treated with the Janus kinase (JAK) inhibitor ruxolitinib. On the basis of our findings, we used ruxolitinib to treat five patients with APS-1 and assessed clinical, immunologic, histologic, transcriptional, and autoantibody responses.Patients with APS-1 had enhanced interferon-γ responses in blood and in all examined autoimmunity-affected tissues. Aire-/- mice had selectively increased interferon-γ production by T cells and enhanced interferon-γ, phosphorylated signal transducer and activator of transcription 1 (pSTAT1), and CXCL9 signals in multiple organs. Ifng ablation or ruxolitinib-induced JAK-STAT blockade in Aire-/- mice normalized interferon-γ responses and averted T-cell infiltration and damage in organs. Ruxolitinib treatment of five patients with APS-1 led to decreased levels of T-cell-derived interferon-γ, normalized interferon-γ and CXCL9 levels, and remission of alopecia, oral candidiasis, nail dystrophy, gastritis, enteritis, arthritis, Sjögren's-like syndrome, urticaria, and thyroiditis. No serious adverse effects from ruxolitinib were identified in these patients.Our findings indicate that APS-1, which is caused by AIRE deficiency, is characterized by excessive, multiorgan interferon-γ-mediated responses. JAK inhibition with ruxolitinib in five patients showed promising results. (Funded by the National Institute of Allergy and Infectious Diseases and others.).
  •  
3.
  • Karch, J., et al. (författare)
  • Terahertz Radiation Driven Chiral Edge Currents in Graphene
  • 2011
  • Ingår i: Physical Review Letters. - : American Physical Society. - 1079-7114 .- 0031-9007. ; 107:27
  • Tidskriftsartikel (refereegranskat)abstract
    • We observe photocurrents induced in single-layer graphene samples by illumination of the graphene edges with circularly polarized terahertz radiation at normal incidence. The photocurrent flows along the sample edges and forms a vortex. Its winding direction reverses by switching the light helicity from left to right handed. We demonstrate that the photocurrent stems from the sample edges, which reduce the spatial symmetry and result in an asymmetric scattering of carriers driven by the radiation electric field. The developed theory based on Boltzmann's kinetic equation is in a good agreement with the experiment. We show that the edge photocurrents can be applied for determination of the conductivity type and the momentum scattering time of the charge carriers in the graphene edge vicinity.
  •  
4.
  • Drexler, C, et al. (författare)
  • Magnetic quantum ratchet effect in graphene
  • 2013
  • Ingår i: Nature Nanotechnology. - : Nature Publishing Group. - 1748-3387 .- 1748-3395. ; 8:2, s. 104-107
  • Tidskriftsartikel (refereegranskat)abstract
    • A periodically driven system with spatial asymmetry can exhibit a directed motion facilitated by thermal or quantum fluctuations(1). This so-called ratchet effect(2) has fascinating ramifications in engineering and natural sciences(3-18). Graphene(19) is nominally a symmetric system. Driven by a periodic electric field, no directed electric current should flow. However, if the graphene has lost its spatial symmetry due to its substrate or adatoms, an electronic ratchet motion can arise. We report an experimental demonstration of such an electronic ratchet in graphene layers, proving the underlying spatial asymmetry. The orbital asymmetry of the Dirac fermions is induced by an in-plane magnetic field, whereas the periodic driving comes from terahertz radiation. The resulting magnetic quantum ratchet transforms the a.c. power into a d.c. current, extracting work from the out-of-equilibrium electrons driven by undirected periodic forces. The observation of ratchet transport in this purest possible two-dimensional system indicates that the orbital effects may appear and be substantial in other two-dimensional crystals such as boron nitride, molybdenum dichalcogenides and related heterostructures. The measurable orbital effects in the presence of an in-plane magnetic field provide strong evidence for the existence of structure inversion asymmetry in graphene.
  •  
5.
  • Drexler, C., et al. (författare)
  • Magnetic quantum ratchet effect in graphene
  • 2013
  • Ingår i: Nature Nanotechnology. - 1748-3387 .- 1748-3395. ; 8:2, s. 104-107
  • Tidskriftsartikel (refereegranskat)abstract
    • A periodically driven system with spatial asymmetry can exhibit a directed motion facilitated by thermal or quantum fluctuations(1). This so-called ratchet effect(2) has fascinating ramifications in engineering and natural sciences(3-18). Graphene(19) is nominally a symmetric system. Driven by a periodic electric field, no directed electric current should flow. However, if the graphene has lost its spatial symmetry due to its substrate or adatoms, an electronic ratchet motion can arise. We report an experimental demonstration of such an electronic ratchet in graphene layers, proving the underlying spatial asymmetry. The orbital asymmetry of the Dirac fermions is induced by an in-plane magnetic field, whereas the periodic driving comes from terahertz radiation. The resulting magnetic quantum ratchet transforms the a.c. power into a d.c. current, extracting work from the out-of-equilibrium electrons driven by undirected periodic forces. The observation of ratchet transport in this purest possible two-dimensional system indicates that the orbital effects may appear and be substantial in other two-dimensional crystals such as boron nitride, molybdenum dichalcogenides and related heterostructures. The measurable orbital effects in the presence of an in-plane magnetic field provide strong evidence for the existence of structure inversion asymmetry in graphene.
  •  
6.
  • Drexler, C., et al. (författare)
  • Terahertz radiation induced edge currents in graphene
  • 2011
  • Ingår i: RMMW-THz 2011 - 36th International Conference on Infrared, Millimeter, and Terahertz Waves. - 9781457705090
  • Konferensbidrag (refereegranskat)abstract
    • We report on the observation of the terahertz radiation induced edge photogalvanic effect. The directed net electric current is generated in single layer graphene by the irradiation of the samples' edges with linearly or circularly polarized terahertz laser radiation at normal incidence. We show that the directed net electric current stems from the sample edges, which reduce locally the symmetry and result in an asymmetric scattering of carriers driven by the radiation field.
  •  
7.
  •  
8.
  • Ganichev, S.D., et al. (författare)
  • Magnetic quantum ratchet effect in graphene
  • 2013
  • Ingår i: International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz. - 2162-2027 .- 2162-2035. - 9781467347174
  • Konferensbidrag (refereegranskat)abstract
    • We report on the observation of magnetic quantum ratchet (MQR) effect induced by electric field of terahertz radiation in single-layer graphene samples subjected to an inplane magnetic field. We show that the dc electric current stems from the orbital asymmetry of the Dirac fermions induced by an in-plane magnetic field, while the periodic driving comes from terahertz radiation. A microscopic theory of the observed effect is developed being in a good qualitative agreement with the experiment. The observation of the ratchet transport in the purest possible two-dimensional system indicates that the orbital effects may appear and be substantial in other 2D crystals, such as boron nitride, molybdenum dichalcogenides, and related heterostructures. The measurable orbital effects in the presence of an in-plane magnetic field give strong evidence for the existence of structure inversion asymmetry in graphene.
  •  
9.
  • Karch, J., et al. (författare)
  • Dynamic Hall Effect Driven by Circularly Polarized Light in a Graphene Layer
  • 2010
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 105:22, s. 227402-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the observation of the circular ac Hall effect where the current is solely driven by the crossed ac electric and magnetic fields of circularly polarized radiation. Illuminating an unbiased monolayer sheet of graphene with circularly polarized terahertz radiation at room temperature generates-under oblique incidence-an electric current perpendicular to the plane of incidence, whose sign is reversed by switching the radiation helicity. Alike the classical dc Hall effect, the voltage is caused by crossed E and B fields which are, however rotating with the lights frequency.
  •  
10.
  •  
11.
  •  
12.
  • Ganichev, S.D., et al. (författare)
  • Photon helicity driven currents in graphene
  • 2010
  • Ingår i: IRMMW-THz 2010 - 35th International Conference on Infrared, Millimeter, and Terahertz Waves, Conference Guide. - 9781424466573
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • We report on the observation of photon helicity driven currents in graphene. We demonstrate that by illuminating unbiased monolayer graphene samples with terahertz (THz) laser radiation at room temperature under oblique and normal incidence causes directed electric currents. This includes currents which are solely driven by the light's helicity.
  •  
13.
  • Mayor-Ruiz, C, et al. (författare)
  • ERF deletion rescues RAS deficiency in mouse embryonic stem cells
  • 2018
  • Ingår i: Genes & development. - : Cold Spring Harbor Laboratory. - 1549-5477 .- 0890-9369. ; 32:7-8, s. 568-576
  • Tidskriftsartikel (refereegranskat)abstract
    • MEK inhibition in combination with a glycogen synthase kinase-3β (GSK3β) inhibitor, referred as the 2i condition, favors pluripotency in embryonic stem cells (ESCs). However, the mechanisms by which the 2i condition limits ESC differentiation and whether RAS proteins are involved in this phenomenon remain poorly understood. Here we show that RAS nullyzygosity reduces the growth of mouse ESCs (mESCs) and prohibits their differentiation. Upon RAS deficiency or MEK inhibition, ERF (E twenty-six 2 [Ets2]-repressive factor), a transcriptional repressor from the ETS domain family, translocates to the nucleus, where it binds to the enhancers of pluripotency factors and key RAS targets. Remarkably, deletion of Erf rescues the proliferative defects of RAS-devoid mESCs and restores their capacity to differentiate. Furthermore, we show that Erf loss enables the development of RAS nullyzygous teratomas. In summary, this work reveals an essential role for RAS proteins in pluripotency and identifies ERF as a key mediator of the response to RAS/MEK/ERK inhibition in mESCs.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  • Olbrich, P., et al. (författare)
  • Terahertz radiation induced photocurrents in graphene subjected to an in-plane magnetic field
  • 2012
  • Ingår i: International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz. - 2162-2027 .- 2162-2035. - 9781467315975
  • Konferensbidrag (refereegranskat)abstract
    • We report on the observation of terahertz radiation induced photocurrents in single-layer graphene samples subjected to an in-plane magnetic field. The photosignal is observed for both, linearly and circularly polarized radiation. A remarkable effect is that the current inverts its sign not only by switching the magnetic field direction, but as well by changing the radiation helicity from left- to right-handedness. We demonstrate that the photocurrent stems from strong structure inversion asymmetry (SIA) of samples originating from the presence of substrate and/or adatoms on graphene. The analysis shows that the observed effect represents a new type of ratchet effects: magnetic field induced ratchets. A microscopic theory of the observed effect is developed being in a good qualitative agreement with the experiment. Furthermore, the experiments open a promising access to the investigation of SIA which is of particular interest for the understanding of graphene properties as well as applications.
  •  
18.
  • Gallo, Selene, et al. (författare)
  • Functional connectivity signatures of major depressive disorder: machine learning analysis of two multicenter neuroimaging studies
  • 2023
  • Ingår i: Molecular Psychiatry. - : SPRINGERNATURE. - 1359-4184 .- 1476-5578. ; 28:7, s. 3013-3022
  • Tidskriftsartikel (refereegranskat)abstract
    • The promise of machine learning has fueled the hope for developing diagnostic tools for psychiatry. Initial studies showed high accuracy for the identification of major depressive disorder (MDD) with resting-state connectivity, but progress has been hampered by the absence of large datasets. Here we used regular machine learning and advanced deep learning algorithms to differentiate patients with MDD from healthy controls and identify neurophysiological signatures of depression in two of the largest resting-state datasets for MDD. We obtained resting-state functional magnetic resonance imaging data from the REST-meta-MDD (N = 2338) and PsyMRI (N = 1039) consortia. Classification of functional connectivity matrices was done using support vector machines (SVM) and graph convolutional neural networks (GCN), and performance was evaluated using 5-fold cross-validation. Features were visualized using GCN-Explainer, an ablation study and univariate t-testing. The results showed a mean classification accuracy of 61% for MDD versus controls. Mean accuracy for classifying (non-)medicated subgroups was 62%. Sex classification accuracy was substantially better across datasets (73-81%). Visualization of the results showed that classifications were driven by stronger thalamic connections in both datasets, while nearly all other connections were weaker with small univariate effect sizes. These results suggest that whole brain resting-state connectivity is a reliable though poor biomarker for MDD, presumably due to disease heterogeneity as further supported by the higher accuracy for sex classification using the same methods. Deep learning revealed thalamic hyperconnectivity as a prominent neurophysiological signature of depression in both multicenter studies, which may guide the development of biomarkers in future studies.
  •  
19.
  • Maccari, Maria Elena, et al. (författare)
  • Activated phosphoinositide 3-kinase δ syndrome: Update from the ESID Registry and comparison with other autoimmune-lymphoproliferative inborn errors of immunity.
  • 2023
  • Ingår i: The Journal of allergy and clinical immunology. - 1097-6825. ; 152:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Activated phosphoinositide-3-kinase δ syndrome (APDS) is an inborn error of immunity (IEI) with infection susceptibility and immune dysregulation, clinically overlapping with other conditions. Management depends on disease evolution, but predictors of severe disease are lacking.This study sought to report the extended spectrum of disease manifestations in APDS1 versus APDS2; compare these to CTLA4 deficiency, NFKB1 deficiency, and STAT3 gain-of-function (GOF) disease; and identify predictors of severity in APDS.Data was collected from the ESID (European Society for Immunodeficiencies)-APDS registry and was compared with published cohorts of the other IEIs.The analysis of 170 patients with APDS outlines high penetrance and early onset of APDS compared to the other IEIs. The large clinical heterogeneity even in individuals with the same PIK3CD variant E1021K illustrates how poorly the genotype predicts the disease phenotype and course. The high clinical overlap between APDS and the other investigated IEIs suggests relevant pathophysiological convergence of the affected pathways. Preferentially affected organ systems indicate specific pathophysiology: bronchiectasis is typical of APDS1; interstitial lung disease and enteropathy are more common in STAT3 GOF and CTLA4 deficiency. Endocrinopathies are most frequent in STAT3 GOF, but growth impairment is also common, particularly in APDS2. Early clinical presentation is a risk factor for severe disease in APDS.APDS illustrates how a single genetic variant can result in a diverse autoimmune-lymphoproliferative phenotype. Overlap with other IEIs is substantial. Some specific features distinguish APDS1 from APDS2. Early onset is a risk factor for severe disease course calling for specific treatment studies in younger patients.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-19 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy