SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ollikainen M) "

Sökning: WFRF:(Ollikainen M)

  • Resultat 1-25 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • van Dongen, J, et al. (författare)
  • DNA methylation signatures of aggression and closely related constructs: A meta-analysis of epigenome-wide studies across the lifespan
  • 2021
  • Ingår i: Molecular psychiatry. - : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 26:6, s. 2148-2162
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA methylation profiles of aggressive behavior may capture lifetime cumulative effects of genetic, stochastic, and environmental influences associated with aggression. Here, we report the first large meta-analysis of epigenome-wide association studies (EWAS) of aggressive behavior (N = 15,324 participants). In peripheral blood samples of 14,434 participants from 18 cohorts with mean ages ranging from 7 to 68 years, 13 methylation sites were significantly associated with aggression (alpha = 1.2 × 10−7; Bonferroni correction). In cord blood samples of 2425 children from five cohorts with aggression assessed at mean ages ranging from 4 to 7 years, 83% of these sites showed the same direction of association with childhood aggression (r = 0.74, p = 0.006) but no epigenome-wide significant sites were found. Top-sites (48 at a false discovery rate of 5% in the peripheral blood meta-analysis or in a combined meta-analysis of peripheral blood and cord blood) have been associated with chemical exposures, smoking, cognition, metabolic traits, and genetic variation (mQTLs). Three genes whose expression levels were associated with top-sites were previously linked to schizophrenia and general risk tolerance. At six CpGs, DNA methylation variation in blood mirrors variation in the brain. On average 44% (range = 3–82%) of the aggression–methylation association was explained by current and former smoking and BMI. These findings point at loci that are sensitive to chemical exposures with potential implications for neuronal functions. We hope these results to be a starting point for studies leading to applications as peripheral biomarkers and to reveal causal relationships with aggression and related traits.
  •  
4.
  • Beck, J. J., et al. (författare)
  • Genetic meta-analysis of twin birth weight shows high genetic correlation with singleton birth weight
  • 2021
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 30:19, s. 1894-1905
  • Tidskriftsartikel (refereegranskat)abstract
    • Birth weight (BW) is an important predictor of newborn survival and health and has associations with many adult health outcomes, including cardiometabolic disorders, autoimmune diseases and mental health. On average, twins have a lower BW than singletons as a result of a different pattern of fetal growth and shorter gestational duration. Therefore, investigations into the genetics of BW often exclude data from twins, leading to a reduction in sample size and remaining ambiguities concerning the genetic contribution to BW in twins. In this study, we carried out a genome-wide association meta-analysis of BW in 42 212 twin individuals and found a positive correlation of beta values (Pearson's r = 0.66, 95% confidence interval [CI]: 0.47-0.77) with 150 previously reported genome-wide significant variants for singleton BW. We identified strong positive genetic correlations between BW in twins and numerous anthropometric traits, most notably with BW in singletons (genetic correlation [r(g)]= 0.92, 95% CI: 0.66-1.18). Genetic correlations of BW in twins with a series of health-related traits closely resembled those previously observed for BW in singletons. Polygenic scores constructed from a genome-wide association study on BW in the UK Biobank demonstrated strong predictive power in a target sample of Dutch twins and singletons. Together, our results indicate that a similar genetic architecture underlies BW in twins and singletons and that future genome-wide studies might benefit from including data from large twin registers.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  • Marttila, S, et al. (författare)
  • Methylation status of VTRNA2-1/nc886 is stable across populations, monozygotic twin pairs and in majority of tissues
  • 2022
  • Ingår i: Epigenomics. - : Future Medicine Ltd. - 1750-192X .- 1750-1911. ; 14:18, s. 1105-1124
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims & methods: The aim of this study was to characterize the methylation level of a polymorphically imprinted gene, VTRNA2-1/ nc886, in human populations and somatic tissues.48 datasets, consisting of more than 30 tissues and >30,000 individuals, were used. Results: nc886 methylation status is associated with twin status and ethnic background, but the variation between populations is limited. Monozygotic twin pairs present concordant methylation, whereas ∼30% of dizygotic twin pairs present discordant methylation in the nc886 locus. The methylation levels of nc886 are uniform across somatic tissues, except in cerebellum and skeletal muscle. Conclusion: The nc886 imprint may be established in the oocyte, and, after implantation, the methylation status is stable, excluding a few specific tissues.
  •  
12.
  •  
13.
  • Voisin, Sarah, et al. (författare)
  • Exercise is associated with younger methylome and transcriptome profiles in human skeletal muscle
  • 2024
  • Ingår i: Aging Cell. - 1474-9726. ; , s. 1-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Exercise training prevents age-related decline in muscle function. Targeting epigenetic aging is a promising actionable mechanism and late-life exercise mitigates epigenetic aging in rodent muscle. Whether exercise training can decelerate, or reverse epigenetic aging in humans is unknown. Here, we performed a powerful meta-analysis of the methylome and transcriptome of an unprecedented number of human skeletal muscle samples (n = 3176). We show that: (1) individuals with higher baseline aerobic fitness have younger epigenetic and transcriptomic profiles, (2) exercise training leads to significant shifts of epigenetic and transcriptomic patterns toward a younger profile, and (3) muscle disuse "ages" the transcriptome. Higher fitness levels were associated with attenuated differential methylation and transcription during aging. Furthermore, both epigenetic and transcriptomic profiles shifted toward a younger state after exercise training interventions, while the transcriptome shifted toward an older state after forced muscle disuse. We demonstrate that exercise training targets many of the age-related transcripts and DNA methylation loci to maintain younger methylome and transcriptome profiles, specifically in genes related to muscle structure, metabolism, and mitochondrial function. Our comprehensive analysis will inform future studies aiming to identify the best combination of therapeutics and exercise regimes to optimize longevity.
  •  
14.
  •  
15.
  •  
16.
  • Imboden, Medea, et al. (författare)
  • Epigenome-wide association study of lung function level and its change
  • 2019
  • Ingår i: European Respiratory Journal. - : European Respiratory Society. - 0903-1936 .- 1399-3003. ; 54:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous reports link differential DNA methylation (DNAme) to environmental exposures that are associated with lung function. Direct evidence on lung function DNAme is, however, limited. We undertook an agnostic epigenome-wide association study (EWAS) on pre-bronchodilation lung function and its change in adults.In a discovery-replication EWAS design, DNAme in blood and spirometry were measured twice, 6-15 years apart, in the same participants of three adult population-based discovery cohorts (n=2043). Associated DNAme markers (p<5×10-7) were tested in seven replication cohorts (adult: n=3327; childhood: n=420). Technical bias-adjusted residuals of a regression of the normalised absolute β-values on control probe-derived principle components were regressed on level and change of forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and their ratio (FEV1/FVC) in the covariate-adjusted discovery EWAS. Inverse-variance-weighted meta-analyses were performed on results from discovery and replication samples in all participants and never-smokers.EWAS signals were enriched for smoking-related DNAme. We replicated 57 lung function DNAme markers in adult, but not childhood samples, all previously associated with smoking. Markers not previously associated with smoking failed replication. cg05575921 (AHRR (aryl hydrocarbon receptor repressor)) showed the statistically most significant association with cross-sectional lung function (FEV1/FVC: pdiscovery=3.96×10-21 and pcombined=7.22×10-50). A score combining 10 DNAme markers previously reported to mediate the effect of smoking on lung function was associated with lung function (FEV1/FVC: p=2.65×10-20).Our results reveal that lung function-associated methylation signals in adults are predominantly smoking related, and possibly of clinical utility in identifying poor lung function and accelerated decline. Larger studies with more repeat time-points are needed to identify lung function DNAme in never-smokers and in children.
  •  
17.
  • Kaprio, J, et al. (författare)
  • The Older Finnish Twin Cohort - 45 Years of Follow-up
  • 2019
  • Ingår i: Twin research and human genetics : the official journal of the International Society for Twin Studies. - : Cambridge University Press (CUP). - 1832-4274. ; 22:4, s. 240-254
  • Tidskriftsartikel (refereegranskat)abstract
    • The older Finnish Twin Cohort (FTC) was established in 1974. The baseline survey was in 1975, with two follow-up health surveys in 1981 and 1990. The fourth wave of assessments was done in three parts, with a questionnaire study of twins born during 1945–1957 in 2011–2012, while older twins were interviewed and screened for dementia in two time periods, between 1999 and 2007 for twins born before 1938 and between 2013 and 2017 for twins born in 1938–1944. The content of these wave 4 assessments is described and some initial results are described. In addition, we have invited twin-pairs, based on response to the cohortwide surveys, to participate in detailed in-person studies; these are described briefly together with key results. We also review other projects based on the older FTC and provide information on the biobanking of biosamples and related phenotypes.
  •  
18.
  •  
19.
  • Qian, C., et al. (författare)
  • Early vs. late enoxaparin for the prevention of venous thromboembolism in patients with ICH: A double blind placebo controlled multicenter study
  • 2021
  • Ingår i: Clinical Neurology and Neurosurgery. - : Elsevier BV. - 0303-8467. ; 202
  • Tidskriftsartikel (refereegranskat)abstract
    • Backround: Venous thromboembolism (VTE) after primary intracerebral hemorrhage (ICH) worsens patient prognosis. Administering low-molecular weight heparins (LMWH) to prevent VTE early (24 h) may increase the risk of hematoma enlargement, whereas administering late (72 h) after onset may decrease its effect on VTE prevention. The authors investigated when it is safe and effective to start LMWH in ICH patients. Methods: In the setting of double blinded, placebo controlled randomization, patients >18 years of age with paretic lower extremity, and admitted to the emergency room within 12 h of the onset of ICH, were randomized into two groups. Patients in the enoxaparin group received 20 mg twice a day 24 h (early) after the onset of ICH and in the placebo group 72 h (late) after onset respectively. Both groups immediately received intermittent pneumatic compression stockings at the ER. Patients were prospectively and routinely screened for VTE and hemorrhagic complications 1 day after entering the study and again before discharge. Results: 139 patients were included for randomization in this study. Only 3 patients developed VTE, 2 in the early enoxaparin group and one in the late enoxaparin group. No patients developed PE. Thromboembolic events (p = 0.901), risk of hematoma enlargement (p = 0.927) and overall outcome (P = 0.904) did not differ significantly between the groups. Conclusion: Administering 40 mg/d LMWH for prevention of VTE to a spontaneous ICH patient is safe regardless of whether it is started 24 h (early) or 72 h (late) after the hemorrhage. Risk of hemorrhage enlargement is not associated with early LMWH treatment. Administering LMWH late did not increase VTEs.
  •  
20.
  •  
21.
  • Bahl, Aileen, et al. (författare)
  • Hormone Replacement Therapy Associated White Blood Cell DNA Methylation and Gene Expression are Associated With Within-Pair Differences of Body Adiposity and Bone Mass
  • 2015
  • Ingår i: Twin Research and Human Genetics. - : Cambridge University Press (CUP). - 1832-4274 .- 1839-2628. ; 18:6, s. 647-661
  • Tidskriftsartikel (refereegranskat)abstract
    • The loss of estrogen during menopause causes changes in the female body, with wide-ranging effects on health. Estrogen-containing hormone replacement therapy (HRT) leads to a relief of typical menopausal symptoms, benefits bone and muscle health, and is associated with tissue-specific gene expression profiles. As gene expression is controlled by epigenetic factors (including DNA methylation), many of which are environmentally sensitive, it is plausible that at least part of the HRT-associated gene expression is due to changes in DNA methylation profile. We investigated genome-wide DNA methylation and gene expression patterns of white blood cells (WBCs) and their associations with body composition, including muscle and bone measures of monozygotic (MZ) female twin pairs discordant for HRT. We identified 7,855 nominally significant differentially methylated regions (DMRs) associated with 4,044 genes. Of the genes with DMRs, five (ACBA1, CCL5, FASLG, PPP2R2B, and UHRF1) were also differentially expressed. All have been previously associated with HRT or estrogenic regulation, but not with HRT-associated DNA methylation. All five genes were associated with bone mineral content (BMC), and ABCA1, FASLG, and UHRF1 were also associated with body adiposity. Our study is the first to show that HRT associates with genome-wide DNA methylation alterations in WBCs. Moreover, we show that five differentially expressed genes with DMRs associate with clinical measures, including body fat percentage, lean body mass, bone mass, and blood lipids. Our results indicate that at least part of the known beneficial HRT effects on body composition and bone mass may be regulated by DNA methylation associated alterations in gene expression in circulating WBCs.
  •  
22.
  •  
23.
  • Konki, Mikko, et al. (författare)
  • Peripheral blood DNA methylation differences in twin pairs discordant for Alzheimer's disease.
  • 2019
  • Ingår i: Clinical Epigenetics. - : BioMed Central. - 1868-7083 .- 1868-7075. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Alzheimer's disease results from a neurodegenerative process that starts well before the diagnosis can be made. New prognostic or diagnostic markers enabling early intervention into the disease process would be highly valuable. Environmental and lifestyle factors largely modulate the disease risk and may influence the pathogenesis through epigenetic mechanisms, such as DNA methylation. As environmental and lifestyle factors may affect multiple tissues of the body, we hypothesized that the disease-associated DNA methylation signatures are detectable in the peripheral blood of discordant twin pairs.RESULTS: Comparison of 23 disease discordant Finnish twin pairs with reduced representation bisulfite sequencing revealed peripheral blood DNA methylation differences in 11 genomic regions with at least 15.0% median methylation difference and FDR adjusted p value ≤ 0.05. Several of the affected genes are primarily associated with neuronal functions and pathologies and do not display disease-associated differences in gene expression in blood. The DNA methylation mark in ADARB2 gene was found to be differentially methylated also in the anterior hippocampus, including entorhinal cortex, of non-twin cases and controls. Targeted bisulfite pyrosequencing of the DNA methylation mark in ADARB2 gene in 62 Finnish and Swedish twin pairs revealed that, in addition to the disease status, DNA methylation of this region is influenced by gender, age, zygosity, APOE genotype, and smoking. Further analysis of 120 Swedish twin pairs indicated that this specific DNA methylation mark is not predictive for Alzheimer's disease and becomes differentially methylated after disease onset.CONCLUSIONS: DNA methylation differences can be detected in the peripheral blood of twin pairs discordant for Alzheimer's disease. These DNA methylation signatures may have value as disease markers and provide insights into the molecular mechanisms of pathogenesis. We found no evidence that the DNA methylation marks would be associated with gene expression in blood. Further studies are needed to elucidate the potential importance of the associated genes in neuronal functions and to validate the prognostic or diagnostic value of the individual marks or marker panels.
  •  
24.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 31

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy