SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Oner Sena) "

Sökning: WFRF:(Oner Sena)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Altay, Özlem, et al. (författare)
  • Combined Metabolic Activators with Different NAD+ Precursors Improve Metabolic Functions in the Animal Models of Neurodegenerative Diseases
  • 2024
  • Ingår i: Biomedicines. - : MDPI AG. - 2227-9059. ; 12:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Mitochondrial dysfunction and metabolic abnormalities are acknowledged as significant factors in the onset of neurodegenerative disorders such as Parkinson’s disease (PD) and Alzheimer’s disease (AD). Our research has demonstrated that the use of combined metabolic activators (CMA) may alleviate metabolic dysfunctions and stimulate mitochondrial metabolism. Therefore, the use of CMA could potentially be an effective therapeutic strategy to slow down or halt the progression of PD and AD. CMAs include substances such as the glutathione precursors (L-serine and N-acetyl cysteine), the NAD+ precursor (nicotinamide riboside), and L-carnitine tartrate. Methods: Here, we tested the effect of two different formulations, including CMA1 (nicotinamide riboside, L-serine, N-acetyl cysteine, L-carnitine tartrate), and CMA2 (nicotinamide, L-serine, N-acetyl cysteine, L-carnitine tartrate), as well as their individual components, on the animal models of AD and PD. We assessed the brain and liver tissues for pathological changes and immunohistochemical markers. Additionally, in the case of PD, we performed behavioral tests and measured responses to apomorphine-induced rotations. Findings: Histological analysis showed that the administration of both CMA1 and CMA2 formulations led to improvements in hyperemia, degeneration, and necrosis in neurons for both AD and PD models. Moreover, the administration of CMA2 showed a superior effect compared to CMA1. This was further corroborated by immunohistochemical data, which indicated a reduction in immunoreactivity in the neurons. Additionally, notable metabolic enhancements in liver tissues were observed using both formulations. In PD rat models, the administration of both formulations positively influenced the behavioral functions of the animals. Interpretation: Our findings suggest that the administration of both CMA1 and CMA2 markedly enhanced metabolic and behavioral outcomes, aligning with neuro-histological observations. These findings underscore the promise of CMA2 administration as an effective therapeutic strategy for enhancing metabolic parameters and cognitive function in AD and PD patients.
  •  
2.
  • Arslan, Mehmet Enes, et al. (författare)
  • Costunolide and Parthenolide Ameliorate MPP plus Induced Apoptosis in the Cellular Parkinson's Disease Model
  • 2023
  • Ingår i: Cells. - : MDPI AG. - 2073-4409. ; 12:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Monoamine oxidase B (MAO-B) is an enzyme that metabolizes several chemicals, including dopamine. MAO-B inhibitors are used in the treatment of Parkinson's Disease (PD), and the inhibition of this enzyme reduces dopamine turnover and oxidative stress. The absence of dopamine results in PD pathogenesis originating from decreased Acetylcholinesterase (AChE) activity and elevated oxidative stress. Here, we performed a molecular docking analysis for the potential use of costunolide and parthenolide terpenoids as potential MAO-B inhibitors in the treatment of PD. Neuroprotective properties of plant-originated costunolide and parthenolide terpenoids were investigated in a cellular PD model that was developed by using MPP+ toxicity. We investigated neuroprotection mechanisms through the analysis of oxidative stress parameters, acetylcholinesterase activity and apoptotic cell death ratios. Our results showed that 100 mu g/mL and 50 mu g/mL of costunolide, and 50 mu g/mL of parthenolide applied to the cellular disease model ameliorated the cytotoxicity caused by MPP+ exposure. We found that acetylcholinesterase activity assays exhibited that terpenoids could ameliorate and restore the enzyme activity as in negative control levels. The oxidative stress parameter analyses revealed that terpenoid application could enhance antioxidant levels and decrease oxidative stress in the cultures. In conclusion, we reported that these two terpenoid molecules could be used in the development of efficient treatment strategies for PD patients.
  •  
3.
  • Gouleni, Niki, et al. (författare)
  • Anticancer Potential of Novel Cinnamoyl Derivatives against U87MG and SHSY-5Y Cell Lines
  • 2024
  • Ingår i: Anti-Cancer Agents in Medicinal Chemistry. - : Bentham Science Publishers Ltd.. - 1871-5206 .- 1875-5992. ; 24:1, s. 39-49
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Glioblastoma multiforme (GBM) is probably the most malignant and aggressive brain tumor belonging to the class of astrocytomas. The considerable aggressiveness and high malignancy of GBM make it a tumor that is difficult to treat. Here, we report the synthesis and biological evaluation of eighteen novel cinnamoyl derivatives (3a-i and 4a-i) to obtain more effective antitumor agents against GBM. Methods: The chemical structures of novel cinnamoyl derivatives (3a-i and 4a-i) were confirmed by NMR and MS analyses. The physicochemical properties and evaluation of the ADME profile of 3a-i and 4a-i were performed by the preADMETlab2.0 web program. Cinnamoyl derivatives 3a-i and 4a-i were tested in vitro for their cytotoxicity against the human healthy fibroblast (HDFa) cells using an MTT cell viability assay. Derivatives with no toxicity on HDFa cells were tested both on human glioblastoma (U87MG) and neuroblastoma (SHSY5Y) cells, chosen as an experimental model of brain tumors. Cell death mechanisms were analyzed by performing flow cytometry analyses. Results: Cinnamoyl derivatives 3a-i and 4a-i showed good physicochemical and ADME properties suggesting that these compounds could be developed as oral drugs endowed with a high capability to cross the blood-brain barrier. Compounds (E)-1-methoxy-4-(2-(phenylsulfonyl)vinyl)benzene (2c) and (E)-N-benzyl-N-(2-(cyclohexylamino)-2-oxoethyl)-3-(3,4,5-trimethoxyphenyl)acrylamide (3e) did not show cytotoxicity on healthy human fibroblast cells up to 100 µg/mL. The most anticarcinogenic molecule, compound 3e, emerged as the most potent anticancer candidate in this study. Flow cytometry results showed that compound 3e (25 µg/mL) application resulted in nearly 86% and 84% cytotoxicity in the U87MG and the SHSY-5Y cell lines, respectively. Compound 2c (25 µg/mL) resulted in 81% and 82% cytotoxicity in the U87MG and the SHSY-5Y cell lines, respectively. Conclusion: Cinnamoyl derivative 3e inhibits the proliferation of cultured U87MG and SHSY-5Y cells by inducing apoptosis. Further detailed research will be conducted to confirm these data in in vivo experimental animal models.
  •  
4.
  • Turkez, Hasan, et al. (författare)
  • Drug Synergism of Anticancer Action in Combination with Favipiravir and Paclitaxel on Neuroblastoma Cells
  • 2024
  • Ingår i: Medicina. - : MDPI AG. - 1010-660X .- 1648-9144. ; 60:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Objectives: Favipiravir (FPV) is an antiviral medication and has an inhibitory effect on Cytochrome P450 (CYP2C8) protein, which is mainly involved in drug metabolism in the liver, and the expression of this gene is known to be enhanced in neuronal cells. The metabolization of Paclitaxel (PTX), a chemotherapeutic drug used in cancer patients, was analyzed for the first time in the human SH-SY5Y neuroblastoma cell line for monitoring possible synergistic effects when administered with FPV. Materials and Methods: Further, in vitro cytotoxic and genotoxic evaluations of FPV and PTX were also performed using wide concentration ranges in a human fibroblast cell culture (HDFa). Nuclear abnormalities were examined under a fluorescent microscope using the Hoechst 33258 fluorescent staining technique. In addition, the synergistic effects of these two drugs on cultured SH-SY5Y cells were determined by MTT cell viability assay. In addition, the death mechanisms that can occur in SHSY-5Y were revealed by using the flow cytometry technique. Results: Cell viability analyses on the HDFa healthy cell culture showed that both FPV and PTX have inhibitory effects at higher concentrations. On the other hand, there were no significant differences in nuclear abnormality numbers when both of the compounds were applied together. Cell viability analyses showed that FPV and PTX applications have higher cytotoxicity, which indicated synergistic toxicity against the SHSY-5Y cell line. Also, PTX exhibited higher anticancer properties against the neuroblastoma cell line when applied with FPV, as shown in both cytotoxicity and flow cytometry analyses. Conclusions: In light of our findings, the anticancer properties of PTX can be enhanced when the drug application is coupled with FPV exposure. Moreover, these results put forth that the anticancer drug dosage should be evaluated carefully in cancer patients who take COVID-19 treatment with FPV.
  •  
5.
  • Turkez, Hasan, et al. (författare)
  • Lipoic Acid Conjugated Boron Hybrids Enhance Wound Healing and Antimicrobial Processes
  • 2023
  • Ingår i: Pharmaceutics. - : MDPI AG. - 1999-4923. ; 15:1, s. 149-
  • Tidskriftsartikel (refereegranskat)abstract
    • Complications of chronic non-healing wounds led to the emergence of nanotechnology-based therapies to enhance healing, facilitate tissue repair, and prevent wound-related complications like infections. Here, we design alpha lipoic acid (ALA) conjugated hexagonal boron nitride (hBN) and boron carbide (B4C) nanoparticles (NPs) to enhance wound healing in human dermal fibroblast (HDFa) cell culture and characterize its antimicrobial properties against Staphylococcus aureus (S. aureus, gram positive) and Escherichia coli (E. coli, gram negative) bacterial strains. ALA molecules are integrated onto hBN and C4B NPs through esterification procedure, and molecular characterizations are performed by using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and UV-vis spectroscopy. Wound healing and antimicrobial properties are investigated via the use of cell viability assays, scratch test, oxidative stress, and antimicrobial activity assays. Based on our analysis, we observe that ALA-conjugated hBN NPs have the highest wound-healing feature and antimicrobial activity compared to ALA-B4C. On the other hand, hBN, ALA-B4C, and ALA compounds showed promising regenerative and antimicrobial properties. Also, we find that ALA conjugation enhances wound healing and antimicrobial potency of hBN and B4C NPs. We conclude that the ALA-hBN conjugate is a potential candidate to stimulate regeneration process for injuries.
  •  
6.
  • Yildirim, Ozge Caglar, et al. (författare)
  • Boron Nitride Nanoparticles Loaded with a Boron-Based Hybrid as a Promising Drug Carrier System for Alzheimer's Disease Treatment
  • 2022
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 23:15
  • Tidskriftsartikel (refereegranskat)abstract
    • The search for an innovative and effective drug delivery system that can carry and release targeted drugs with enhanced activity to treat Alzheimer's disease has received much attention in the last decade. In this study, we first designed a boron-based drug delivery system for effective treatment of AD by integrating the folic acid (FA) functional group into hexagonal boron nitride (hBN) nanoparticles (NPs) through an esterification reaction. The hBN-FA drug carrier system was assembled with a new drug candidate and a novel boron-based hybrid containing an antioxidant as BLA, to constitute a self-assembled AD nano transport system. We performed molecular characterization analyses by using UV-vis spectroscopy, Fourier transform infrared spectrophotometer (FTIR), scanning electron microscope (SEM), Energy-dispersive X-ray spectroscopy (EDS) and Zeta potential investigations. Second, we tested the anti-Alzheimer properties of the carrier system on a differentiated neuroblastoma (SHSY5-Y) cell line, which was exposed to beta-amyloid (1-42) peptides to stimulate an experimental in vitro AD model. Next, we performed cytotoxicity analyses of synthesized molecules on the human dermal fibroblast cell line (HDFa) and the experimental AD model. Cytotoxicity analyses showed that even higher concentrations of the carrier system did not enhance the toxicological outcome in HDFa cells. Drug loading analyses reported that uncoated hBN nano conjugate could not load the BLA, whereas the memantine loading capacity of hBN was 84.3%. On the other hand, memantine and the BLA loading capacity of the hBN-FA construct was found to be 95% and 97.5%, respectively. Finally, we investigated the neuroprotective properties of the nano carrier systems in the experimental AD model. According to the results, 25 mu g/mL concentrations of hBN-FA+memantine (94% cell viability) and hBN-FA+BLA (99% cell viability) showed ameliorative properties against beta-amyloid (1-42) peptide toxicity (50% cell viability). These results were generated through the use of flow cytometry, acetylcholinesterase (AChE) and antioxidant assays. In conclusion, the developed drug carrier system for AD treatment showed promising potential for further investigations and enlightened neuroprotective capabilities of boron molecules to treat AD and other neurodegenerative diseases. On the other hand, enzyme activity, systematic toxicity analyses, and animal studies should be performed to understand neuroprotective properties of the designed carrier system comprehensively.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy