SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Oosterloo T.) "

Sökning: WFRF:(Oosterloo T.)

  • Resultat 1-17 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Blok, W.J.G., et al. (författare)
  • an overview of the MHONGOOSE survey: Observing nearby galaxies with MeerKAT
  • 2016
  • Ingår i: Proceedings of Science. - 1824-8039.
  • Konferensbidrag (refereegranskat)abstract
    • MHONGOOSE is a deep survey of the neutral hydrogen distribution in a representative sample of 30 nearby disk and dwarf galaxies with H I masses from ∼ 106 to ∼ 1011 M, and luminosities from MR ∼ 12 to MR ∼ −22. The sample is selected to uniformly cover the available range in log(MHI). Our extremely deep observations, down to H I column density limits of well below 1018 cm−2 — or a few hundred times fainter than the typical H I disks in galaxies — will directly detect the effects of cold accretion from the intergalactic medium and the links with the cosmic web. These observations will be the first ever to probe the very low-column density neutral gas in galaxies at these high resolutions. Combination with data at other wavelengths, most of it already available, will enable accurate modeling of the properties and evolution of the mass components in these galaxies and link these with the effects of environment, dark matter distribution, and other fundamental properties such as halo mass and angular momentum. MHONGOOSE can already start addressing some of the SKA-1 science goals and will provide a comprehensive inventory of the processes driving the transformation and evolution of galaxies in the nearby universe at high resolution and over 5 orders of magnitude in column density. It will be a Nearby Galaxies Legacy Survey that will be unsurpassed until the advent of the SKA, and can serve as a highly visible, lasting statement of MeerKAT’s capabilities.
  •  
2.
  • Shulevski, A., et al. (författare)
  • LOFAR discovery and wide-band characterisation of an ultra-steep spectrum AGN radio remnant associated with Abell 1318
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 682
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the discovery of a very extended (550 kpc) and low-surface-brightness (3.3 µJy arcsec−2 at 144 MHz) radio emission region in Abell 1318. These properties are consistent with its characterisation as an active galactic nucleus (AGN) remnant radio plasma, based on its morphology and radio spectral properties. We performed a broad-band (54–1400 MHz) radio spectral index and curvature analysis using LOFAR, uGMRT, and WSRT-APERTIF data. We also derived the radiative age of the detected emission, estimating a maximum age of 250 Myr. The morphology of the source is remarkably intriguing, with two larger, oval-shaped components and a thinner, elongated, and filamentary structure in between, plausibly reminiscent of two aged lobes and a jet. Based on archival Swift as well as SDSS data we performed an X-ray and optical characterisation of the system, whose virial mass was estimated to be ∼7.4 × 1013 M. This places A1318 in the galaxy group regime. Interestingly, the radio source does not have a clear optical counterpart embedded in it, thus, we propose that it is most likely an unusual AGN remnant of previous episode(s) of activity of the AGN hosted by the brightest group galaxy (∼2.6 × 1012 M), which is located at a projected distance of ∼170 kpc in the current epoch. This relatively high offset may be a result of IGrM sloshing sourced by a minor merger. The filamentary morphology of the source may suggest that the remnant plasma has been perturbed by the system dynamics, however, only future deeper X-ray observations will be able to address this question.
  •  
3.
  • Adams, E. A. K., et al. (författare)
  • First release of Apertif imaging survey data
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 667
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Apertif is a phased-array feed system for the Westerbork Synthesis Radio Telescope, providing forty instantaneous beams over 300 MHz of bandwidth. A dedicated survey program utilizing this upgrade started on 1 July 2019, with the last observations taken on 28 February 2022. The imaging survey component provides radio continuum, polarization, and spectral line data. Aims. Public release of data is critical for maximizing the legacy of a survey. Toward that end, we describe the release of data products from the first year of survey operations, through 30 June 2020. In particular, we focus on defining quality control metrics for the processed data products. Methods. The Apertif imaging pipeline, Apercal, automatically produces non-primary beam corrected continuum images, polarization images and cubes, and uncleaned spectral line and dirty beam cubes for each beam of an Apertif imaging observation. For this release, processed data products are considered on a beam-by-beam basis within an observation. We validate the continuum images by using metrics that identify deviations from Gaussian noise in the residual images. If the continuum image passes validation, we release all processed data products for a given beam. We apply further validation to the polarization and line data products and provide flags indicating the quality of those data products. Results. We release all raw observational data from the first year of survey observations, for a total of 221 observations of 160 independent target fields, covering approximately one thousand square degrees of sky. Images and cubes are released on a per beam basis, and 3374 beams (of 7640 considered) are released. The median noise in the continuum images is 41.4 uJy beam(-1), with a slightly lower median noise of 36.9 uJy beam(-1) in the Stokes V polarization image. The median angular resolution is 11.6 ''/sin delta. The median noise for all line cubes, with a spectral resolution of 36.6 kHz, is 1.6 mJy beam(-1), corresponding to a 3-sigma H i column density sensitivity of 1.8 x 10(20) atoms cm(-2) over 20 km s(-1) (for a median angular resolution of 24 '' x 15 ''). Line cubes at lower frequency have slightly higher noise values, consistent with the global RFI environment and overall Apertif system performance. We also provide primary beam images for each individual Apertif compound beam. The data are made accessible using a Virtual Observatory interface and can be queried using a variety of standard tools.
  •  
4.
  • Adebahr, B., et al. (författare)
  • Apercal - The Apertif calibration pipeline
  • 2022
  • Ingår i: Astronomy and Computing. - : Elsevier BV. - 2213-1337. ; 38
  • Tidskriftsartikel (refereegranskat)abstract
    • Apertif (APERture Tile In Focus) is one of the Square Kilometre Array (SKA) pathfinder facilities. The Apertif project is an upgrade to the 50-year-old Westerbork Synthesis Radio Telescope (WSRT) using phased-array feed technology. The new receivers create 40 individual beams on the sky, achieving an instantaneous sky coverage of 6.5 square degrees. The primary goal of the Apertif Imaging Survey is to perform a wide survey of 3500 square degrees (AWES) and a medium deep survey of 350 square degrees (AMES) of neutral atomic hydrogen (up to a redshift of 0.26), radio continuum emission and polarisation. Each survey pointing yields 4.6 TB of correlated data. The goal of Apercal is to process this data and fully automatically generate science ready data products for the astronomical community while keeping up with the survey observations. We make use of common astronomical software packages in combination with Python based routines and parallelisation. We use an object oriented module-based approach to ensure easy adaptation of the pipeline. A Jupyter notebook based framework allows user interaction and execution of individual modules as well as a full automatic processing of a complete survey observation. If nothing interrupts processing, we are able to reduce a single pointing survey observation on our five node cluster with 24 physical cores and 256 GB of memory each within 24 h keeping up with the speed of the surveys. The quality of the generated images is sufficient for scientific usage for 44% of the recorded data products with single images reaching dynamic ranges of several thousands. Future improvements will increase this percentage to over 80%. Our design allowed development of the pipeline in parallel to the commissioning of the Apertif system.
  •  
5.
  • Kukreti, P., et al. (författare)
  • Seeing the forest and the trees: A radio investigation of the ULIRG Mrk 273
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 664
  • Tidskriftsartikel (refereegranskat)abstract
    • Galaxy mergers have been observed to trigger nuclear activity by feeding gas to the central supermassive black hole. One such class of objects are Ultra Luminous InfraRed Galaxies (ULIRGs), which are mostly late stage major mergers of gas-rich galaxies. Recently, large-scale (100 kpc) radio continuum emission has been detected in a select number of ULIRGs, all of which also harbour powerful Active Galactic Nuclei (AGN). This hints at the presence of large-scale radio emission being evidence for nuclear activity. Exploring the origin of this radio emission and its link to nuclear activity requires high sensitivity multi-frequency data. We present such an analysis of the ULIRG Mrk 273. Using the International LOFAR telescope (ILT), we detected spectacular large-scale arcs in this system. This detection includes, for the first time, a giant 190 kpc arc in the north. We propose these arcs are fuelled by a low power radio AGN triggered by the merger. We also identified a bright 45 kpc radio ridge, which is likely related to the ionised gas nebula in that region. We combined this with high sensitivity data from APERture Tile In Focus (Apertif) and archival data from the Very Large Array (VLA) to explore the spectral properties. The ILT simultaneously allowed us to probe the nucleus at a resolution of 0.3, where we detected three components, and, for the first time, diffuse emission around these components. Combining this with archival high frequency VLA images of the nucleus allowed us to detect absorption in one component, and a steep spectrum radio AGN in another. We then extrapolate from this case study to the importance of investigating the presence of radio emission in more ULIRGs and what it can tell us about the link between mergers and the presence of radio activity.
  •  
6.
  • van Cappellen, W., et al. (författare)
  • Apertif: Phased array feeds for the Westerbork Synthesis Radio Telescope: System overview and performance characteristics
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 658
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe the APERture Tile In Focus (Apertif) system, a phased array feed (PAF) upgrade of the Westerbork Synthesis Radio Telescope that transforms this telescope into a high-sensitivity, wide-field-of-view L-band imaging and transient survey instrument. Using novel PAF technology, up to 40 partially overlapping beams are formed on the sky simultaneously, significantly increasing the survey speed of the telescope. With this upgraded instrument, an imaging survey covering an area of 2300 deg2 is being performed that will deliver both continuum and spectral line datasets, of which the first data have been publicly released. In addition, a time domain transient and pulsar survey covering 15 000 deg2 is in progress. An overview of the Apertif science drivers, hardware, and software of the upgraded telescope is presented, along with its key performance characteristics.
  •  
7.
  • Boersma, O. M., et al. (författare)
  • A search for radio emission from double-neutron star merger GW190425 using Apertif
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 650
  • Tidskriftsartikel (refereegranskat)abstract
    • Context Detection of the electromagnetic emission from coalescing binary neutron stars (BNS) is important for understanding the merger and afterglow. Aims. We present a search for a radio counterpart to the gravitational-wave (GW) source GW190425, a BNS merger, using Apertif on the Westerbork Synthesis Radio Telescope (WSRT). Methods We observed a field of high probability in the associated localisation region for three epochs at ΔTâ€., =â€., 68, 90, 109 d post merger. We identified all sources that exhibit flux variations consistent with the expected afterglow emission of GW190425. We also looked for possible transients. These are sources that are only present in one epoch. In addition, we quantified our ability to search for radio afterglows in the fourth and future observing runs of the GW detector network using Monte Carlo simulations. Results We found 25 afterglow candidates based on their variability. None of these could be associated with a possible host galaxy at the luminosity distance of GW190425. We also found 55 transient afterglow candidates that were only detected in one epoch. All of these candidates turned out to be image artefacts. In the fourth observing run, we predict that up to three afterglows will be detectable by Apertif. Conclusions While we did not find a source related to the afterglow emission of GW190425, the search validates our methods for future searches of radio afterglows.
  •  
8.
  • Denes, H., et al. (författare)
  • Characterising the Apertif primary beam response
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 667
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Phased array feeds (PAFs) are multi-element receivers in the focal plane of a telescope that make it possible to simultaneously form multiple beams on the sky by combining the complex gains of the individual antenna elements. Recently, the Westerbork Synthesis Radio Telescope (WSRT) was upgraded with PAF receivers to carry out several observing programs, including two imaging surveys and a time-domain survey. The Apertif imaging surveys use a configuration of 40 partially overlapping compound beams (CBs) simultaneously formed on the sky and arranged in an approximately rectangular shape. Aims. This work is aimed at characterising the response of the 40 Apertif CBs to create frequency-resolved I, XX, and YY polarization empirical beam shapes. The measured CB maps can be used for the image deconvolution, primary beam correction, and mosaicking processes of Apertif imaging data. Methods. We used drift scan measurements to measure the response of each of the 40 Apertif CBs. We derived beam maps for all individual beams in I, XX, and YY polarisation in 10 or 18 frequency bins over the same bandwidth as the Apertif imaging surveys. We sampled the main lobe of the beams and the side lobes up to a radius of 0.6 degrees from the beam centres. In addition, we derived beam maps for each individual WSRT dish. Results. We present the frequency and time dependence of the beam shapes and sizes. We compared the compound beam shapes derived with the drift scan method to beam shapes derived with an independent method using a Gaussian Process Regression comparison between the Apertif continuum images and the NRAO VLA Sky Survey (NVSS) catalogue. We find a good agreement between the beam shapes derived with the two independent methods.
  •  
9.
  • Hess, K. M., et al. (författare)
  • Apertif view of the OH megamaser IRAS 10597+5926: OH 18 cm satellite lines in wide-area H i surveys
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 647
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the serendipitous detection of the two main OH maser lines at 1667 and 1665 MHz associated with IRAS 10597+5926 at zpdbl = 0.19612 in the untargeted Apertif Wide-area Extragalactic imaging Survey (AWES), and the subsequent measurement of the OH 1612 MHz satellite line in the same source. With a total OH luminosity of log(L/Lpdbl ) = 3.90 ± 0.03, IRAS 10597+5926 is the fourth brightest OH megamaser (OHM) known. We measure a lower limit for the 1667/1612 ratio of R1612 > 45.9, which is the highest limiting ratio measured for the 1612 MHz OH satellite line to date. OH satellite line measurements provide a potentially valuable constraint by which to compare detailed models of OH maser pumping mechanisms. Optical imaging shows that the galaxy is likely a late-stage merger. Based on published infrared and far ultraviolet fluxes, we find that the galaxy is an ultra-luminous infrared galaxy (ULIRG) with log(LTIR/Lpdbl) = 12.24 that is undergoing a starburst with an estimated star formation rate of 179 ± 40 Mpdbl yr-1. These host galaxy properties are consistent with the physical conditions responsible for very bright OHM emission. Finally, we provide an update on the predicted number of OH masers that may be found in AWES and estimate the total number of OH masers that will be detected in each of the individual main and satellite OH 18 cm lines.
  •  
10.
  • Ivashina, Marianna, 1975, et al. (författare)
  • An Optimal Beamforming Strategy for Wide-Field Surveys With Phased-Array-Fed Reflector Antennas
  • 2011
  • Ingår i: IEEE Transactions on Antennas and Propagation. - : Institute of Electrical and Electronics Engineers (IEEE). - 0018-926X .- 1558-2221. ; 59:6, s. 1864-1875
  • Tidskriftsartikel (refereegranskat)abstract
    • An optimal beamforming strategy is proposed for performing large-field surveys with dual-polarized phased-array-fed reflector antennas. This strategy uses signal-processing algorithms that maximize the beam sensitivity and the continuity of a field of view (FOV) that is formed by multiple closely overlapping beams. A mathematical framework and a newly developed numerical approach are described to analyze and optimize a phased array feed (PAF) system. The modeling approach has been applied to an experimental PAF system (APERTIF prototype) that is installed on the Westerbork Synthesis Radio Telescope. The resulting beam shapes, sensitivity, and polarization diversity characteristics (such as the beam orthogonality and the intrinsic cross-polarization ratio) are examined over a large FOV and frequency bandwidth. We consider weighting schemes to achieve a conjugate-field matched situation (max. received power), maximum signal-to-noise ratio (SNR), and a reduced SNR scenario but with constraints on the beam shape. The latter improves the rotational symmetry of the beam and reduces the sensitivity ripple, at a modest maximum sensitivity penalty. The obtained numerical results demonstrate a very good agreement with the measurements performed at the telescope.
  •  
11.
  • Kutkin, A. M., et al. (författare)
  • Apertif 1.4 GHz continuum observations of the Boötes field and their combined view with LOFAR
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 676
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a new image of a 26.5 square degrees region in the Boötes constellation obtained at 1.4 GHz using the Aperture Tile in Focus (Apertif) system on the Westerbork Synthesis Radio Telescope. We use a newly developed processing pipeline that includes direction-dependent self-calibration, which provides a significant improvement in the quality of the images compared to those released as part of the Apertif first data release. For the Boötes region, we mosaicked 187 Apertif images and extracted a source catalog. The mosaic image has an angular resolution of 27 × 11.5″ and a median background noise of 40 μJy beam-1. The catalog has 8994 sources and is complete down to the 0.3 mJy level. We combined the Apertif image with LOFAR images of the Boötes field at 54 and 150 MHz to study the spectral properties of the sources. We find a spectral flattening toward sources with a low flux density. Using the spectral index limits from Apertif nondetections, we derive that up to 9% of the sources have ultrasteep spectra with a slope below -1.2. A steepening of the spectral index with increasing redshift is also seen in the data, which shows a different dependence for the low-and high-frequency spectral index. The explanation probably is that a population of sources has concave radio spectra with a turnover frequency of about the LOFAR band. Additionally, we discuss cases of individual extended sources with an interesting resolved spectral structure. With the improved pipeline, we aim to continue to process data from the Apertif wide-area surveys and release the improved 1.4-GHz images of several well-known fields.
  •  
12.
  •  
13.
  • Oostrum, L. C., et al. (författare)
  • Repeating fast radio bursts with WSRT/Apertif
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 635
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Repeating fast radio bursts (FRBs) present excellent opportunities to identify FRB progenitors and host environments as well as to decipher the underlying emission mechanism. Detailed studies of repeating FRBs might also hold clues as to the origin of FRBs as a population. Aims. We aim to detect bursts from the first two repeating FRBs, FRB 121102 (R1) and FRB 180814.J0422+73 (R2), and to characterise their repeat statistics. We also want to significantly improve the sky localisation of R2 and identify its host galaxy. Methods. We used the Westerbork Synthesis Radio Telescope to conduct extensive follow-up of these two repeating FRBs. The new phased-array feed system, Apertif, allows one to cover the entire sky position uncertainty of R2 with fine spatial resolution in a single pointing. The data were searched for bursts around the known dispersion measures of the two sources. We characterise the energy distribution and the clustering of detected R1 bursts. Results. We detected 30 bursts from R1. The non-Poissonian nature is clearly evident from the burst arrival times, which is consistent with earlier claims. Our measurements indicate a dispersion measure (DM) of 563.5(2) pc cm(-3), suggesting a significant increase in DM over the past few years. Assuming a constant position angle across the burst, we place an upper limit of 8% on the linear polarisation fraction for the brightest burst in our sample. We did not detect any bursts from R2. Conclusions. A single power-law might not fit the R1 burst energy distribution across the full energy range or widely separated detections. Our observations provide improved constraints on the clustering of R1 bursts. Our stringent upper limits on the linear polarisation fraction imply a significant depolarisation, either intrinsic to the emission mechanism or caused by the intervening medium at 1400 MHz, which is not observed at higher frequencies. The non-detection of any bursts from R2, despite nearly 300 h of observations, implies either a highly clustered nature of the bursts, a steep spectral index, or a combination of the two assuming that the source is still active. Another possibility is that R2 has turned off completely, either permanently or for an extended period of time.
  •  
14.
  • Rottgering, H., et al. (författare)
  • LOFAR and APERTIF Surveys of the Radio Sky: Probing Shocks and Magnetic Fields in Galaxy Clusters
  • 2011
  • Ingår i: Journal of Astrophysics and Astronomy. - : Springer Science and Business Media LLC. - 0250-6335 .- 0973-7758. ; 32:4, s. 557-566
  • Tidskriftsartikel (refereegranskat)abstract
    • At very low frequencies, the new pan-European radio telescope LOFAR is opening the last unexplored window of the electromagnetic spectrum for astrophysical studies. The revolutionary APERTIF-phased arrays that are about to be installed on the Westerbork radio telescope (WSRT) will dramatically increase the survey speed for the WSRT. Combined surveys with these two facilities will deeply chart the northern sky over almost two decades in radio frequency from similar to 15 up to 1400 MHz. Here we briefly describe some of the capabilities of these new facilities and what radio surveys are planned to study fun-damental issues related to the formation and evolution of galaxies and clusters of galaxies. In the second part we briefly review some recent observational results directly showing that diffuse radio emission in clusters traces shocks due to cluster mergers. As these diffuse radio sources are relatively bright at low frequencies, LOFAR should be able to detect thousands of such sources up to the epoch of cluster formation. This will allow addressing many question about the origin and evolution of shocks and magnetic fields in clusters. At the end we briefly review some of the first and very preliminary LOFAR results on clusters.
  •  
15.
  • Shulevski, A., et al. (författare)
  • Recurrent radio emission and gas supply: the radio galaxy B2 0258+35
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 545, s. A91 (article no.)-
  • Tidskriftsartikel (refereegranskat)abstract
    • Outlined is the discovery of a very faint, diffuse, low surface-brightness (0.5 mJy beam(-1), 1.4 mJy arcmin(-2) on average) structure around the radio source B2 0258+35 hosted by an HI-rich early-type galaxy (NGC 1167). Because B2 0258+35 is a young compact steep spectrum (CSS) source, the newly discovered structure could represent a remnant from an earlier stage of activity of an active galactic nucleus (AGN). We explain in detail all possibilities for triggering the radio activity in B2 0258+35 regarding gas accretion in a recurrent AGN activity framework. NGC 1167 hosts a very regular, extended and massive HI disk that has been studied in great detail. It has regular kinematics on large scales, which, together with stellar population studies of NGC 1167, exclude the possibility of a recent merger as the trigger for the current AGN activity that is responsible for the CSS source. Previous studies of the HI closer to the core seem to preclude the assumption of a circum-nuclear disk of HI as the source of the accreting gas. We consider the cooling of gas from the hot X-ray halo as a possible alternative option for the fueling of the AGN, as suggested for other sources of similar radio power as B2 0258+35. This would provide a more likely explanation for the recurrent activity. Furthermore, if the previously made suggestion in the literature that the inner CSS may not be able to grow to large scales is correct, this implies that different cycles of activity may have different characteristics (e. g. radio power of the emission). Estimates are given for the age of the faint diffuse emission as well as for the current accretion rate, which agree well with literature values. If our assumptions about the accretion mechanism are correct, similar large-scale, relic-like structures should be more commonly found around early-type galaxies, which will hopefully be confirmed by the next generation of sensitive, low-frequency radio surveys.
  •  
16.
  •  
17.
  • Wijnen, I. G. M., et al. (författare)
  • De novo variants in CAMTA1 cause a syndrome variably associated with spasticity, ataxia, and intellectual disability
  • 2020
  • Ingår i: European Journal of Human Genetics. - : Springer Science and Business Media LLC. - 1018-4813 .- 1476-5438. ; 28, s. 763-769
  • Tidskriftsartikel (refereegranskat)abstract
    • Previously, intragenic CAMTA1 copy number variants (CNVs) have been shown to cause non-progressive, congenital ataxia with or without intellectual disability (OMIM#614756). However, ataxia, intellectual disability, and dysmorphic features were all incompletely penetrant, even within families. Here, we describe four patients with de novo nonsense, frameshift or missense CAMTA1 variants. All four patients predominantly manifested features of ataxia and/or spasticity. Borderline intellectual disability and dysmorphic features were both present in one patient only, and other neurological and behavioural symptoms were variably present. Neurodevelopmental delay was found to be mild. Our findings indicate that also nonsense, frameshift and missense variants in CAMTA1 can cause a spastic ataxia syndrome as the main phenotype.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-17 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy