SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Opgenoorth Hermann) "

Sökning: WFRF:(Opgenoorth Hermann)

  • Resultat 1-25 av 49
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andrews, David, et al. (författare)
  • Control of the topside Martian ionosphere by crustal magnetic fields
  • 2015
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 120:4, s. 3042-3058
  • Tidskriftsartikel (refereegranskat)abstract
    • We present observations from the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) instrument onboard Mars Express of the thermal electron plasma density of the Martian ionosphere and investigate the extent to which it is influenced by the presence of Mars's remnant crustal magnetic fields. We use locally measured electron densities, derived when MARSIS is operating in active ionospheric sounding (AIS) mode, covering an altitude range from approximate to 300km to approximate to 1200km. We compare these measured densities to an empirical model of the dayside ionospheric plasma density in this diffusive transport-dominated regime. We show that small spatial-scale departures from the averaged values are strongly correlated with the pattern of the crustal fields. Persistently elevated densities are seen in regions of relatively stronger crustal fields across the whole altitude range. Comparing these results with measurements of the (scalar) magnetic field also obtained by MARSIS/AIS, we characterize the dayside strength of the draped magnetic fields in the same regions. Finally, we provide a revised empirical model of the plasma density in the Martian ionosphere, including parameterizations for both the crustal field-dominated and draping-dominated regimes.
  •  
2.
  • Andrews, David J., et al. (författare)
  • Determination of local plasma densities with the MARSIS radar : Asymmetries in the high-altitude Martian ionosphere
  • 2013
  • Ingår i: Journal of Geophysical Research: Space Physics. - : American Geophysical Union (AGU). - 2169-9380. ; 118:10, s. 6228-6242
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a novel method for the automatic retrieval of local plasma density measurements from the Mars advanced radar for subsurface and ionospheric sounding (MARSIS) active ionospheric sounder (AIS) instrument. The resulting large data set is then used to study the configuration of the Martian ionosphere at altitudes above approximate to 300km. An empirical calibration routine is used, which relates the local plasma density to the measured intensity of multiple harmonics of the local plasma frequency oscillation, excited in the plasma surrounding the antenna in response to the transmission of ionospheric sounding pulses. Enhanced accuracy is achieved in higherdensity (n(e)>150cm(-3)) plasmas, when MARSIS AIS is able to directly measure the fundamental frequency of the local plasma oscillation. To demonstrate the usefulness of this data set, the derived plasma densities are binned by altitude and solar zenith angle in regions over weak (|B-c|<20nT) and strong (|B-c|>20nT) crustal magnetic fields, and we find clear and consistent evidence for a significant asymmetry between these two regions. We show that within the approximate to 300-1200km altitude range sampled, the median plasma density is substantially higher on the dayside in regions of relatively stronger crustal fields than under equivalent illuminations in regions of relatively weaker crustal fields. Conversely, on the nightside, median plasma densities are found to be higher in regions of relatively weaker crustal fields. We suggest that the observed asymmetry arises as a result of the modulation of the efficiency of plasma transport processes by the irregular crustal fields and the generally horizontal draped interplanetary magnetic field.
  •  
3.
  • Andrews, David J., et al. (författare)
  • MARSIS Observations of Field-Aligned Irregularities and Ducted Radio Propagation in the Martian Ionosphere
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 123:8, s. 6251-6263
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge of Mars's ionosphere has been significantly advanced in recent years by observations from Mars Express and lately Mars Atmosphere and Volatile EvolutioN. A topic of particular interest are the interactions between the planet's ionospheric plasma and its highly structured crustal magnetic fields and how these lead to the redistribution of plasma and affect the propagation of radio waves in the system. In this paper, we elucidate a possible relationship between two anomalous radar signatures previously reported in observations from the Mars Advanced Radar for Subsurface and Ionospheric Sounding instrument on Mars Express. Relatively uncommon observations of localized, extreme increases in the ionospheric peak density in regions of radial (cusp-like) magnetic fields and spread echo radar signatures are shown to be coincident with ducting of the same radar pulses at higher altitudes on the same field lines. We suggest that these two observations are both caused by a high electric field (perpendicular to B) having distinctly different effects in two altitude regimes. At lower altitudes, where ions are demagnetized and electrons magnetized, and recombination dominantes, a high electric field causes irregularities, plasma turbulence, electron heating, slower recombination, and ultimately enhanced plasma densities. However, at higher altitudes, where both ions and electrons are magnetized and atomic oxygen ions cannot recombine directly, the high electric field instead causes frictional heating, a faster production of molecular ions by charge exchange, and so a density decrease. The latter enables ducting of radar pulses on closed field lines, in an analogous fashion to interhemispheric ducting in the Earth's ionosphere.
  •  
4.
  • Andrews, David J., et al. (författare)
  • Oblique reflections in the Mars Express MARSIS data set : Stable density structures in the Martian ionosphere
  • 2014
  • Ingår i: Journal of Geophysical Research-Space Physics. - 2169-9380. ; 119:5, s. 3944-3960
  • Tidskriftsartikel (refereegranskat)abstract
    • The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) onboard the European Space Agency's Mars Express (MEX) spacecraft routinely detects evidence of localized plasma density structures in the Martian dayside ionosphere. Such structures, likely taking the form of spatially extended elevations in the plasma density at a given altitude, give rise to oblique reflections in the Active Ionospheric Sounder data. These structures are likely related to the highly varied Martian crustal magnetic field. In this study we use the polar orbit of MEX to investigate the repeatability of the ionospheric structures producing these anomalous reflections, examining data taken in sequences of multiple orbits which pass over the same regions of the Martian surface under similar solar illuminations, within intervals lasting tens of days. Presenting three such examples, or case studies, we show for the first time that these oblique reflections are often incredibly stable, indicating that the underlying ionospheric structures are reliably reformed in the same locations and with qualitatively similar parameters. The visibility, or lack thereof, of a given oblique reflection on a single orbit can generally be attributed to variations in the crustal field within the ionosphere along the spacecraft trajectory. We show that, within these examples, oblique reflections are generally detected whenever the spacecraft passes over regions of intense near-radial crustal magnetic fields (i.e., with a cusp-like configuration). The apparent stability of these structures is an important feature that must be accounted for in models of their origin.
  •  
5.
  • Andrews, David J., et al. (författare)
  • Plasma observations during the Mars atmospheric "plume" event of March-April 2012
  • 2016
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 121:4, s. 3139-3154
  • Tidskriftsartikel (refereegranskat)abstract
    • We present initial analyses and conclusions from plasma observations made during the reported "Mars plume event" of March-April 2012. During this period, multiple independent amateur observers detected a localized, high-altitude "plume" over the Martian dawn terminator, the cause of which remains to be explained. The estimated brightness of the plume exceeds that expected for auroral emissions, and its projected altitude greatly exceeds that at which clouds are expected to form. We report on in situ measurements of ionospheric plasma density and solar wind parameters throughout this interval made by Mars Express, obtained over the same surface region but at the opposing terminator. Measurements in the ionosphere at the corresponding location frequently show a disturbed structure, though this is not atypical for such regions with intense crustal magnetic fields. We tentatively conclude that the formation and/or transport of this plume to the altitudes where it was observed could be due in part to the result of a large interplanetary coronal mass ejection (ICME) encountering the Martian system. Interestingly, we note that the only similar plume detection in May 1997 may also have been associated with a large ICME impact at Mars.
  •  
6.
  • Borälv, Eva (författare)
  • Substorm Features in the High-Latitude Ionosphere and Magnetosphere : Multi-Instrument Observations
  • 2003
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The space around Earth, confined in the terrestrial magnetosphere, is to some extent shielded from the Sun's solar wind plasma and magnetic field. During certain conditions, however, strong interaction can occur between the solar wind and the magnetosphere, resulting in magnetospheric activity of several forms, among which substorms and storms are the most prominent. A general framework for how these processes work have been outlayed through the history of research, however, there still remain questions to be answered. The most striking example regards the onset of substorms, where both the onset cause and location in the magnetosphere/ionosphere are still debated. These are clearly not easily solved problems, since a substorm is a global process, ideally requiring simultaneous measurements in the magnetotail and ionosphere. Investigated in this work are temporal and spatial scales for substorm and convection processes in the Earth's magnetosphere and ionosphere. This is performed by combining observations from a number of both ground-based and spacecraft-borne instruments. The observations indicate that the magnetotail's cross-section is involved to a larger spatial extent than previously considered in the substorm process. Furthermore, convection changes result in topological changes of the magnetosphere on a fast time scale. The results show that the magnetosphere is, on a global magnetospheric scale, highly dynamic during convection changes and ensuing substorms.
  •  
7.
  • Buchert, Stephan, et al. (författare)
  • SWARM observations of equatorial electron densities and topside GPS track losses
  • 2015
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 42:7, s. 2088-2092
  • Tidskriftsartikel (refereegranskat)abstract
    • The SWARM satellites have both upward looking GPS receivers and Langmuir probes. The receivers repeatedly lost track of the L1 band signal in January-February 2014 at postsunset hours, when SWARM was at nearly 500km altitude. This indicates that the signal was disturbed by ionospheric irregularities at this height and above. The track losses occurred right at density gradients associated with equatorial plasma bubbles and predominantly where the measured background density was highest. The signal showed strong phase scintillations rather than in amplitude, indicating that SWARM might be in the near field of an ionospheric phase screen. Density biteouts, depletions between steep gradients, were up to almost 3 orders of magnitude deep in the background of a more shallow trough centered at the magnetic equator. Comparison between satellites shows that the biteout structure strongly varied in longitude over approximate to 100km and has in north-south steep walls.
  •  
8.
  • Edberg, Niklas J. T., et al. (författare)
  • Effects of Saturn's magnetospheric dynamics on Titan's ionosphere
  • 2015
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 120:10, s. 8884-8898
  • Tidskriftsartikel (refereegranskat)abstract
    • We use the Cassini Radio and Plasma Wave Science/Langmuir probe measurements of the electron density from the first 110 flybys of Titan to study how Saturn's magnetosphere influences Titan's ionosphere. The data is first corrected for biased sampling due to varying solar zenith angle and solar energy flux (solar cycle effects). We then present results showing that the electron density in Titan's ionosphere, in the altitude range 1600-2400km, is increased by about a factor of 2.5 when Titan is located on the nightside of Saturn (Saturn local time (SLT) 21-03h) compared to when on the dayside (SLT 09-15 h). For lower altitudes (1100-1600km) the main dividing factor for the ionospheric density is the ambient magnetospheric conditions. When Titan is located in the magnetospheric current sheet, the electron density in Titan's ionosphere is about a factor of 1.4 higher compared to when Titan is located in the magnetospheric lobes. The factor of 1.4 increase in between sheet and lobe flybys is interpreted as an effect of increased particle impact ionization from approximate to 200eV sheet electrons. The factor of 2.5 increase in electron density between flybys on Saturn's nightside and dayside is suggested to be an effect of the pressure balance between thermal plus magnetic pressure in Titan's ionosphere against the dynamic pressure and energetic particle pressure in Saturn's magnetosphere.
  •  
9.
  • Edberg, Niklas J. T., et al. (författare)
  • Extreme densities in Titan's ionosphere during the T85 magnetosheath encounter
  • 2013
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 40:12, s. 2879-2883
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Cassini Langmuir probe measurements of the highest electron number densities ever reported from the ionosphere of Titan. The measured density reached 4310cm(-3) during the T85 Titan flyby. This is at least 500cm(-3) higher than ever observed before and at least 50% above the average density for similar solar zenith angles. The peak of the ionospheric density is not reached on this flyby, making the maximum measured density a lower limit. During this flyby, we also report that an impacting coronal mass ejection (CME) leaves Titan in the magnetosheath of Saturn, where it is exposed to shocked solar wind plasma for at least 2 h 45 min. We suggest that the solar wind plasma in the magnetosheath during the CME conditions significantly modifies Titan's ionosphere by an addition of particle impact ionization by precipitating protons.
  •  
10.
  • Edberg, Niklas J. T., et al. (författare)
  • Solar cycle modulation of Titan's ionosphere
  • 2013
  • Ingår i: Journal of Geophysical Research-Space Physics. - : American Geophysical Union (AGU). - 2169-9380. ; 118:8, s. 5255-5264
  • Tidskriftsartikel (refereegranskat)abstract
    • During the six Cassini Titan flybys T83-T88 (May 2012 to November 2012) the electron density in the ionospheric peak region, as measured by the radio and plasma wave science instrument/Langmuir probe, has increased significantly, by 15-30%, compared to previous average. These measurements suggest that a longterm change has occurred in the ionosphere of Titan, likely caused by the rise to the new solar maximum with increased EUV fluxes. We compare measurements from TA, TB, and T5, from the declining phase of solar cycle 23 to the recent T83-T88 measurements during cycle 24, since the solar irradiances from those two intervals are comparable. The peak electron densities normalized to a common solar zenith angle N-norm from those two groups of flybys are comparable but increased compared to the solar minimum flybys (T16-T71). The integrated solar irradiance over the wavelengths 1-80nm, i.e., the solar energy flux, F-e, correlates well with the observed ionospheric peak density values. Chapman layer theory predicts that NnormFek, with k=0.5. We find observationally that the exponent k=0.540.18. Hence, the observations are in good agreement with theory despite the fact that many assumptions in Chapman theory are violated. This is also in good agreement with a similar study by Girazian and Withers (2013) on the ionosphere of Mars. We use this power law to estimate the peak electron density at the subsolar point of Titan during solar maximum conditions and find it to be about 6500cm(-3), i.e., 85-160% more than has been measured during the entire Cassini mission.
  •  
11.
  • Engebretson, Mark J., et al. (författare)
  • Interhemispheric Comparisons of Large Nighttime Magnetic Perturbation Events Relevant to GICs
  • 2020
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 125:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Nearly all studies of impulsive magnetic perturbation events (MPEs) with large magnetic field variability (dB/dt) that can produce dangerous geomagnetically induced currents (GICs) have used data from the Northern Hemisphere. Here we present details of four large‐amplitude MPE events (|ΔBx| > 900 nT and |dB/dt| > 10 nT/s in at least one component) observed between 2015 and 2018 in conjugate high‐latitude regions (65–80° corrected geomagnetic latitude), using magnetometer data from (1) Pangnirtung and Iqaluit in eastern Arctic Canada and the magnetically conjugate South Pole Station in Antarctica and (2) the Greenland West Coast Chain and two magnetically conjugate chains in Antarctica, AAL‐PIP and BAS LPM. From one to three different isolated MPEs localized in corrected geomagnetic latitude were observed during three premidnight events; many were simultaneous within 3 min in both hemispheres. Their conjugate latitudinal amplitude profiles, however, matched qualitatively at best. During an extended postmidnight interval, which we associate with an interval of omega bands, multiple highly localized MPEs occurred independently in time at each station in both hemispheres. These nighttime MPEs occurred under a wide range of geomagnetic conditions, but common to each was a negative interplanetary magnetic field Bz that exhibited at least a modest increase at or near the time of the event. A comparison of perturbation amplitudes to modeled ionospheric conductances in conjugate hemispheres clearly favored a current generator model over a voltage generator model for three of the four events; neither model provided a good fit for the premidnight event that occurred near vernal equinox.
  •  
12.
  • Engebretson, Mark J., et al. (författare)
  • Nighttime Magnetic Perturbation Events Observed in Arctic Canada: 3. Occurrence and Amplitude as Functions of Magnetic Latitude, Local Time, and Magnetic Disturbance Indices
  • 2021
  • Ingår i: Space Weather. - : American Geophysical Union (AGU). - 1542-7390. ; 19:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Rapid changes of magnetic fields associated with nighttime magnetic perturbation events (MPEs) with amplitudes |ΔB| of hundreds of nT and 5–10 min duration can induce geomagnetically induced currents (GICs) that can harm technological systems. This study compares the occurrence and amplitude of nighttime MPEs with |dB/dt| ≥ 6 nT/s observed during 2015 and 2017 at five stations in Arctic Canada ranging from 64.7° to 75.2° in corrected geomagnetic latitude (MLAT) as functions of magnetic local time (MLT), the SME (SuperMAG version of AE) and SYM/H magnetic indices, and time delay after substorm onsets. Although most MPEs occurred within 30 min after a substorm onset, ∼10% of those observed at the four lower latitude stations occurred over two hours after the most recent onset. A broad distribution in local time appeared at all five stations between 1700 and 0100 MLT, and a narrower distribution appeared at the lower latitude stations between 0200 and 0700 MLT. There was little or no correlation between MPE amplitude and the SYM/H index; most MPEs at all stations occurred for SYM/H values between −40 and 0 nT. SME index values for MPEs observed >1 h after the most recent substorm onset fell in the lower half of the range of SME values for events during substorms, and dipolarizations in synchronous orbit at GOES 13 during these events were weaker or more often nonexistent. These observations suggest that substorms are neither necessary nor sufficient to cause MPEs, and hence predictions of GICs cannot focus solely on substorms.
  •  
13.
  • Facsko, G., et al. (författare)
  • One year in the Earth's magnetosphere : A global MHD simulation and spacecraft measurements
  • 2016
  • Ingår i: Space Weather. - 1542-7390. ; 14:5, s. 351-367
  • Tidskriftsartikel (refereegranskat)abstract
    • The response of the Earth's magnetosphere to changing solar wind conditions is studied with a 3-D Magnetohydrodynamic (MHD) model. One full year (155 Cluster orbits) of the Earth's magnetosphere is simulated using Grand Unified Magnetosphere Ionosphere Coupling simulation (GUMICS-4) magnetohydrodynamic code. Real solar wind measurements are given to the code as input to create the longest lasting global magnetohydrodynamics simulation to date. The applicability of the results of the simulation depends critically on the input parameters used in the model. Therefore, the validity and the variance of the OMNIWeb data are first investigated thoroughly using Cluster measurement close to the bow shock. The OMNIWeb and the Cluster data were found to correlate very well before the bow shock. The solar wind magnetic field and plasma parameters are not changed significantly from the L-1 Lagrange point to the foreshock; therefore, the OMNIWeb data are appropriate input to the GUMICS-4. The Cluster SC3 footprints are determined by magnetic field mapping from the simulation results and the Tsyganenko (T96) model in order to compare two methods. The determined footprints are in rather good agreement with the T96. However, it was found that the footprints agree better in the Northern Hemisphere than the Southern one during quiet conditions. If the B-y is not zero, the agreement of the GUMICS-4 and T96 footprint is worse in longitude in the Southern Hemisphere. Overall, the study implies that a 3-D MHD model can increase our insight of the response of the magnetosphere to solar wind conditions.
  •  
14.
  • Hall, B. E. S., et al. (författare)
  • A survey of superthermal electron flux depressions, or "electron holes," within the illuminated Martian induced magnetosphere
  • 2016
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 121:5, s. 4835-4857
  • Tidskriftsartikel (refereegranskat)abstract
    • Since Mars lacks a global intrinsic magnetic field, the solar wind interacts directly with the Martian upper atmosphere and ionosphere. The presence of localized intense remnant crustal magnetic fields adds to this interaction, making the Martian plasma system a unique environment within the solar system. Rapid reductions in the electron flux, referred to as electron holes, occur within the Martian induced magnetosphere (IM). We present a statistical analysis of this phenomenon identified from proxy measurements of the electron flux derived from measurements by the Analyser of Space Plasmas and Energetic Neutral Atoms Electron Spectrometer experiment on board the Mars Express (MEX) spacecraft. The study is completed for the period of 9 February 2004 to 9 May 2014. Electron holes are observed within the IM in more than 56% of MEX orbits during this study period, occurring predominantly at altitudes less than 1300km, with the majority in the negative X Mars-Centric Solar Orbital direction. The spatial distribution above the surface of Mars is observed to bear close resemblance to that of the crustal magnetic fields as predicted by the Cain et al. [] magnetic field model, suggesting that they play an important role in the formation of these phenomena.
  •  
15.
  • Hall, B. E. S., et al. (författare)
  • Annual variations in the Martian bow shock location as observed by the Mars Express mission
  • 2016
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 121:11, s. 11474-11494
  • Tidskriftsartikel (refereegranskat)abstract
    • The Martian bow shock distance has previously been shown to be anticorrelated with solar wind dynamic pressure but correlated with solar extreme ultraviolet (EUV) irradiance. Since both of these solar parameters reduce with the square of the distance from the Sun, and Mars' orbit about the Sun increases by similar to 0.3 AU from perihelion to aphelion, it is not clear how the bow shock location will respond to variations in these solar parameters, if at all, throughout its orbit. In order to characterize such a response, we use more than 5 Martian years of Mars Express Analyser of Space Plasma and EneRgetic Atoms (ASPERA-3) Electron Spectrometer measurements to automatically identify 11,861 bow shock crossings. We have discovered that the bow shock distance as a function of solar longitude has a minimum of 2.39 R-M around aphelion and proceeds to a maximum of 2.65 R-M around perihelion, presenting an overall variation of similar to 11% throughout the Martian orbit. We have verified previous findings that the bow shock in southern hemisphere is on average located farther away from Mars than in the northern hemisphere. However, this hemispherical asymmetry is small (total distance variation of similar to 2.4%), and the same annual variations occur irrespective of the hemisphere. We have identified that the bow shock location is more sensitive to variations in the solar EUV irradiance than to solar wind dynamic pressure variations. We have proposed possible interaction mechanisms between the solar EUV flux and Martian plasma environment that could explain this annual variation in bow shock location.
  •  
16.
  • Hamrin, Maria, 1972-, et al. (författare)
  • Space weather disturbances in non-stormy times : occurrence of dB/dt spikes during three solar cycles
  • 2023
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 128:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Spatio-temporal variations of ionospheric currents cause rapid magnetic field variations at ground level and Geomagnetically Induced Currents (GICs) that can be harmful for human infrastructure. The risk for large excursions in the magnetic field time derivative, “dB/dt spikes”, is known to be high during geomagnetic storms and substorms. However, less is known about the occurrence of spikes during non-stormy times. We use data from ground-based globally covering magnetometers (SuperMAG database) from the years 1985–2021. We investigate the spike occurrence (|dB/dt| > 100 nT/min) as a function of magnetic local time (MLT), magnetic latitude (Mlat), and the solar cycle phases during non-stormy times (−15 nT ≤ SYM-H < 0). We sort our data into substorm (AL < 200 nT) intervals (“SUB”) and less active intervals between consecutive substorms (“nonSUB”). We find that spikes commonly occur in both SUBs and nonSUBs during non-stormy times (3–23 spikes/day), covering 18–12 MLT and 65°–80° Mlat. This also implies a risk for infrastructure damage during non-stormy times, especially when several spikes occur nearby in space and time, possibly causing infrastructure weathering. We find that spikes are more common in the declining phase of the solar cycle, and that the occurrence of SUB spikes propagates from one midnight to one morning hotspot with ∼10 min in MLT for each minute in universal time (UTC). Finally, we discuss causes for the spikes in terms of spatio-temporal variations of ionospheric currents.
  •  
17.
  • Kauristie, K., et al. (författare)
  • On the Usage of Geomagnetic Indices for Data Selection in Internal Field Modelling
  • 2017
  • Ingår i: Space Science Reviews. - : SPRINGER. - 0038-6308 .- 1572-9672. ; 206:1-4, s. 61-90
  • Forskningsöversikt (refereegranskat)abstract
    • We present a review on geomagnetic indices describing global geomagnetic storm activity (Kp, am, Dst and dDst/dt) and on indices designed to characterize high latitude currents and substorms (PC and AE-indices and their variants). The focus in our discussion is in main field modelling, where indices are primarily used in data selection criteria for weak magnetic activity. The publicly available extensive data bases of index values are used to derive joint conditional Probability Distribution Functions (PDFs) for different pairs of indices in order to investigate their mutual consistency in describing quiet conditions. This exercise reveals that Dst and its time derivative yield a similar picture as Kp on quiet conditions as determined with the conditions typically used in internal field modelling. Magnetic quiescence at high latitudes is typically searched with the help of Merging Electric Field (MEF) as derived from solar wind observations. We use in our PDF analysis the PC-index as a proxy for MEF and estimate the magnetic activity level at auroral latitudes with the AL-index. With these boundary conditions we conclude that the quiet time conditions that are typically used in main field modelling (, and ) correspond to weak auroral electrojet activity quite well: Standard size substorms are unlikely to happen, but other types of activations (e.g. pseudo breakups ) can take place, when these criteria prevail. Although AE-indices have been designed to probe electrojet activity only in average conditions and thus their performance is not optimal during weak activity, we note that careful data selection with advanced AE-variants may appear to be the most practical way to lower the elevated RMS-values which still exist in the residuals between modeled and observed values at high latitudes. Recent initiatives to upgrade the AE-indices, either with a better coverage of observing stations and improved baseline corrections (the SuperMAG concept) or with higher accuracy in pinpointing substorm activity (the Midlatitude Positive Bay-index) will most likely be helpful in these efforts.
  •  
18.
  • Lester, Mark, et al. (författare)
  • The Impact of Energetic Particles on the Martian Ionosphere During a Full Solar Cycle of Radar Observations: Radar Blackouts
  • 2022
  • Ingår i: Journal of Geophysical Research - Space Physics. - : John Wiley & Sons. - 2169-9380 .- 2169-9402. ; 127:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first long-term characterization of ionization layers in the lower ionosphere of Mars (below ∼90 km), a region inaccessible to orbital in-situ observations, based on an analysis of radar echo blackouts observed on Mars Express and the Mars Reconnaissance Orbiter from 2006 to 2017. A blackout occurs when the expected surface reflection is partly or totally attenuated for portions of an observation. Enhanced ionization at altitudes of 60–90 km, below the main ionospheric electron density peak, leads to increased absorption of the radar signal, resulting in the blackouts. We find that (a) MARSIS, operating at frequencies between 1.8 and 5 MHz, suffered more blackouts than SHARAD, which has a higher carrier frequency (20 MHz), (b) there is a clear correlation of blackout occurrence with solar cycle, (c) there is no apparent relationship between blackout occurrence and crustal magnetic fields, and (d) blackouts occur during both nightside and dayside observations, although the peak occurrence is deep on the nightside. Analysis of Mars Atmosphere and Volatile EvolutioN Solar Energetic Particle electron counts between 20 and 200 keV demonstrates that these electrons are likely responsible for attenuating the radar signals. We investigate the minimum SEP electron fluxes required to ionize the lower atmosphere and produce measurable attenuation. When both radars experience a blackout, the SEP electron fluxes are at their highest. Based on several case studies, we find that the average SEP spectrum responsible for a blackout is particularly enhanced at its higher energy end, that is, above 70 keV.
  •  
19.
  • Liemohn, Michael W., et al. (författare)
  • Model Evaluation Guidelines for Geomagnetic Index Predictions
  • 2018
  • Ingår i: Space Weather. - 1542-7390. ; 16:12, s. 2079-2102
  • Tidskriftsartikel (refereegranskat)abstract
    • Geomagnetic indices are convenient quantities that distill the complicated physics of some region or aspect of near‐Earth space into a single parameter. Most of the best‐known indices are calculated from ground‐based magnetometer data sets, such as Dst, SYM‐H, Kp, AE, AL, and PC. Many models have been created that predict the values of these indices, often using solar wind measurements upstream from Earth as the input variables to the calculation. This document reviews the current state of models that predict geomagnetic indices and the methods used to assess their ability to reproduce the target index time series. These existing methods are synthesized into a baseline collection of metrics for benchmarking a new or updated geomagnetic index prediction model. These methods fall into two categories: (1) fit performance metrics such as root‐mean‐square error and mean absolute error that are applied to a time series comparison of model output and observations and (2) event detection performance metrics such as Heidke Skill Score and probability of detection that are derived from a contingency table that compares model and observation values exceeding (or not) a threshold value. A few examples of codes being used with this set of metrics are presented, and other aspects of metrics assessment best practices, limitations, and uncertainties are discussed, including several caveats to consider when using geomagnetic indices.
  •  
20.
  • Lillis, Robert J., et al. (författare)
  • MOSAIC: A satellite constellation to enable groundbreaking mars climate system science and prepare for human exploration
  • 2021
  • Ingår i: Planetary Science Journal. - : Institute of Physics (IOP). - 2632-3338. ; 2:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The Martian climate system has been revealed to rival the complexity of Earth's. Over the last 20 yr, a fragmented and incomplete picture has emerged of its structure and variability; we remain largely ignorant of many of the physical processes driving matter and energy flow between and within Mars' diverse climate domains. Mars Orbiters for Surface, Atmosphere, and Ionosphere Connections (MOSAIC) is a constellation of ten platforms focused on understanding these climate connections, with orbits and instruments tailored to observe the Martian climate system from three complementary perspectives. First, low-circular near-polar Sun-synchronous orbits (a large mothership and three smallsats spaced in local time) enable vertical profiling of wind, aerosols, water, and temperature, as well as mapping of surface and subsurface ice. Second, elliptical orbits sampling all of Mars' plasma regions enable multipoint measurements necessary to understand mass/energy transport and ion-driven escape, also enabling, with the polar orbiters, dense radio occultation coverage. Last, longitudinally spaced areostationary orbits enable synoptic views of the lower atmosphere necessary to understand global and mesoscale dynamics, global views of the hydrogen and oxygen exospheres, and upstream measurements of space weather conditions. MOSAIC will characterize climate system variability diurnally and seasonally, on meso-, regional, and global scales, targeting the shallow subsurface all the way out to the solar wind, making many first-of-their-kind measurements. Importantly, these measurements will also prepare for human exploration and habitation of Mars by providing water resource prospecting, operational forecasting of dust and radiation hazards, and ionospheric communication/positioning disruptions.
  •  
21.
  • Liu, William, et al. (författare)
  • Scientific challenges and instrumentation for the International Meridian Circle Program
  • 2021
  • Ingår i: Science China. Earth Sciences. - : Springer. - 1674-7313 .- 1869-1897. ; 64:12, s. 2090-2097
  • Tidskriftsartikel (refereegranskat)abstract
    • Earth’s ecosystems and human activities are threatened by a broad spectrum of hazards of major importance for the safety of ground infrastructures, space systems and space flight: solar activity, earthquakes, atmospheric and climatic disturbances, changes in the geomagnetic field, fluctuations of the global electric circuit. Monitoring and understanding these major hazards to better predict and mitigate their effects is one of the greatest scientific and operational challenges of the 21st century. Though diverse, these hazards share one feature in common: they all leave their characteristic imprints on a critical layer of the Earth’s environment: its ionosphere, middle and upper atmosphere (IMUA). The objective of the International Meridian Circle Program (IMCP), a major international program led by the Chines Academy of Sciences (CAS), is to deploy, integrate and operate a global network of research and monitoring instruments to use the IMUA as a screen on which to detect these imprints. In this article, we first show that the geometry required for the IMCP global observation system leads to a deployment of instruments in priority along the 120°E–60°W great meridian circle, which will cover in an optimal way both the dominant geographic and geomagnetic latitude variations, possibly complemented by a second Great Circle along the 30°E–150°W meridians to capture longitude variations. Then, starting from the Chinese Meridian Project (CMP) network and using it as a template, we give a preliminary and promising description of the instruments to be integrated and deployed along the 120°E–60° W great circle running across China, Australia and the Americas.
  •  
22.
  • Mann, I. R., et al. (författare)
  • International Collaboration Within the United Nations Committee on the Peaceful Uses of Outer Space : Framework for International Space Weather Services (2018-2030)
  • 2018
  • Ingår i: Space Weather. - 1542-7390. ; 16:5, s. 428-433
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Severe space weather is a global threat that requires a coordinated global response. In this Commentary, we review some previous successful actions supporting international coordination between member states in the United Nations (UN) context and make recommendations for a future approach. Member states of the UN Committee on the Peaceful Uses of Outer Space (COPUOS) recently approved new guidelines related to space weather under actions for the long-term sustainability of outer space activities. This is to be followed by UN Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE)+50, which will take place in June 2018 on the occasion of the fiftieth anniversary of the first UNISPACE I held in Vienna in 1968. Expanded international coordination has been proposed within COPUOS under the UNISPACE+50 process, where priorities for 2018-2030 are to be defined under Thematic Priority 4: Framework for International Space Weather Services. The COPUOS expert group for space weather has proposed the creation of a new International Coordination Group for Space Weather be implemented as part of this thematic priority. This coordination group would lead international coordination between member states and across international stakeholders, monitor progress against implementation of guidelines and best practices, and promote coordinated global efforts in the space weather ecosystem spanning observations, research, modeling, and validation, with the goal of improved space weather services. We argue that such improved coordination at the international policy level is essential for increasing global resiliency against the threats arising from severe space weather.
  •  
23.
  • Marque, Christophe, et al. (författare)
  • Solar radio emission as a disturbance of aeronautical radionavigation
  • 2018
  • Ingår i: Journal of Space Weather and Space Climate. - : EDP Sciences. - 2115-7251. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • On November 4th, 2015 secondary air traffic control radar was strongly disturbed in Sweden and some other European countries. The disturbances occurred when the radar antennas were pointing at the Sun. In this paper, we show that the disturbances coincided with the time of peaks of an exceptionally strong (similar to 10(5) Solar Flux Units) solar radio burst in a relatively narrow frequency range around 1 GHz. This indicates that this radio burst is the most probable space weather candidate for explaining the radar disturbances. The dynamic radio spectrum shows that the high flux densities are not due to synchrotron emission of energetic electrons, but to coherent emission processes, which produce a large variety of rapidly varying short bursts (such as pulsations, fiber bursts, and zebra patterns). The radio burst occurs outside the impulsive phase of the associated flare, about 30 min after the soft X-ray peak, and it is temporarily associated with fast evolving activity occurring in strong solar magnetic fields. While the relationship with strong magnetic fields and the coherent spectral nature of the radio burst provide hints towards the physical processes which generate such disturbances, we have so far no means to forecast them. Well-calibrated monitoring instruments of whole Sun radio fluxes covering the UHF band could at least provide a real-time identification of the origin of such disturbances, which reports in the literature show to also affect GPS signal reception.
  •  
24.
  • Nikolaev, A. V., et al. (författare)
  • A quantitative study of magnetospheric magnetic field line deformation by a two-loop substorm current wedge
  • 2015
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 33:4, s. 505-517
  • Tidskriftsartikel (refereegranskat)abstract
    • Substorm current wedge (SCW) formation is associated with global magnetic field reconfiguration during substorm expansion. We combine a two-loop model SCW (SCW2L) with a background magnetic field model to investigate distortion of the ionospheric footpoint pattern in response to changes of different SCW2L parameters. The SCW-related plasma sheet footprint shift results in formation of a pattern resembling an auroral bulge, the poleward expansion of which is controlled primarily by the total current in the region 1 sense current loop (I-1). The magnitude of the footprint latitudinal shift may reach similar to 10 degrees corrected geomagnetic latitude (CGLat) during strong sub-storms (I-1 = 2 MA). A strong helical magnetic field around the field-aligned current generates a surge-like region with embedded spiral structures, associated with a westward traveling surge (WTS) at the western end of the SCW. The helical field may also contribute to rotation of the ionospheric projection of narrow plasma streams (auroral streamers). Other parameters, including the total current in the second (region 2 sense) loop, were found to be of secondary importance. Analyzing two consecutive dipolarizations on 17 March 2010, we used magnetic variation data obtained from a dense midlatitude ground network and several magnetospheric spacecraft, as well as the adaptive AM03 model, to specify SCW2L parameters, which allowed us to predict the magnitude of poleward auroral expansion. Auroral observations made during the two substorm activations demonstrate that the SCW2L combined with the AM03 model nicely describes the azimuthal progression and the observed magnitude of the auroral expansion. This finding indicates that the SCW-related distortions are responsible for much of the observed global development of bright auroras.
  •  
25.
  • Norenius, Linus, et al. (författare)
  • Ground-Based Magnetometer Response to Impacting Magnetosheath Jets
  • 2021
  • Ingår i: Journal of Geophysical Research - Space Physics. - : John Wiley & Sons. - 2169-9380 .- 2169-9402. ; 126:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Localized dynamic pressure pulses in the magnetosheath, or jets, have been a popular topic for discussion in recent decades. Studies show that they can propagate through the magnetosheath and impact the magnetopause, possibly showing up as geoeffective elements at ground level. However, questions still remain on how geoeffective they can be. Previous studies have been limited to case studies during few days and with only a handful of events. In this study we have found 65 cases of impacting jets using observations from the Multiscale Magnetospheric mission during 2015–2017. We examine their geoeffectiveness using ground-based magnetometers (GMAGs). From our statistics we find that GMAGs observe responses as fluctuations in the geomagnetic field with amplitudes of 34 nT, frequencies of 1.9 mHz, and damping times of 370 s. Further, the parallel length and the maximum dynamic pressure of the jet dictate the amplitude of the observed GMAG response. Longer and higher pressure jets inducing larger amplitude responses in GMAG horizontal components. The median time required for the signal to be detected by GMAGs is 190 s. We also examine if jets can be harmful for human infrastructure and cannot exclude that such events could exist.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 49

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy