SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Orear Cedric) "

Sökning: WFRF:(Orear Cedric)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hasmats, Johanna, et al. (författare)
  • Assessment of Whole Genome Amplification for Sequence Capture and Massively Parallel Sequencing
  • 2014
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:1, s. e84785-
  • Tidskriftsartikel (refereegranskat)abstract
    • Exome sequence capture and massively parallel sequencing can be combined to achieve inexpensive and rapid global analyses of the functional sections of the genome. The difficulties of working with relatively small quantities of genetic material, as may be necessary when sharing tumor biopsies between collaborators for instance, can be overcome using whole genome amplification. However, the potential drawbacks of using a whole genome amplification technology based on random primers in combination with sequence capture followed by massively parallel sequencing have not yet been examined in detail, especially in the context of mutation discovery in tumor material. In this work, we compare mutations detected in sequence data for unamplified DNA, whole genome amplified DNA, and RNA originating from the same tumor tissue samples from 16 patients diagnosed with non-small cell lung cancer. The results obtained provide a comprehensive overview of the merits of these techniques for mutation analysis. We evaluated the identified genetic variants, and found that most (74%) of them were observed in both the amplified and the unamplified sequence data. Eighty-nine percent of the variations found by WGA were shared with unamplified DNA. We demonstrate a strategy for avoiding allelic bias by including RNA-sequencing information.
  •  
2.
  • Hasmats, Johanna, et al. (författare)
  • Validation of whole genome amplification for analysis of the p53 tumor suppressor gene in limited amounts of tumor samples
  • 2012
  • Ingår i: Biochemical and Biophysical Research Communications - BBRC. - : Elsevier BV. - 0006-291X .- 1090-2104. ; 425:2, s. 379-383
  • Tidskriftsartikel (refereegranskat)abstract
    • Personalized cancer treatment requires molecular characterization of individual tumor biopsies. These samples are frequently only available in limited quantities hampering genomic analysis. Several whole genome amplification (WGA) protocols have been developed with reported varying representation of genomic regions post amplification. In this study we investigate region dropout using a 929 polymerase based WGA approach. DNA from 123 lung cancers specimens and corresponding normal tissue were used and evaluated by Sanger sequencing of the p53 exons 5-8. To enable comparative analysis of this scarce material, WGA samples were compared with unamplified material using a pooling strategy of the 123 samples. In addition, a more detailed analysis of exon 7 amplicons were performed followed by extensive cloning and Sanger sequencing. Interestingly, by comparing data from the pooled samples to the individually sequenced exon 7, we demonstrate that mutations are more easily recovered from WGA pools and this was also supported by simulations of different sequencing coverage. Overall this data indicate a limited random loss of genomic regions supporting the use of whole genome amplification for genomic analysis.
  •  
3.
  • Laurent-Matha, Valerie, et al. (författare)
  • Proteolysis of cystatin C by cathepsin D in the breast cancer microenvironment
  • 2012
  • Ingår i: FASEB Journal. - : Wiley. - 1530-6860 .- 0892-6638. ; 26:12, s. 5172-5181
  • Tidskriftsartikel (refereegranskat)abstract
    • The aspartic protease cathepsin D, a poor prognostic indicator of breast cancer, is abundantly secreted as procathepsin D by human breast cancer cells and self-activates at low pH in vitro, giving rise to catalytically active cathepsin D. Due to a lower extracellular pH in tumor microenvironments compared to normal tissues, cathepsin D may cleave pathophysiological substrates contributing to cancer progression. Here, we show by yeast 2-hybrid and degradomics analyses that cystatin C, the most potent natural secreted inhibitor of cysteine cathepsins, both binds to and is a substrate of extracellular procathepsin D. The amount of cystatin C in the extracellular environment is reduced in the secretome of mouse embryonic fibroblasts stably transfected with human cathepsin D. Cathepsin D extensively cleaved cystatin C in vitro at low pH. Cathepsin D secreted by breast cancer cells also processed cystatin C at the pericellular pH of tumors and so enhancing extracellular proteolytic activity of cysteine cathepsins. Thus, tumor derived cathepsin D assists breast cancer progression by reducing cystatin C activity, which, in turn, enhances cysteine cathepsin proteolytic activity, revealing a new link between protease classes in the protease web.-Laurent-Matha, V., Huesgen, P. F., Masson, O., Derocq, D., Prebois, C., Gary-Bobo, M., Lecaille, F., Rebiere, B., Meurice, G., Orear, C., Hollingsworth, R. E., Abrahamson, M., Lalmanach, G., Overall, C. M., Liaudet-Coopman, E. Proteolysis of cystatin C by cathepsin D in the breast cancer microenvironment. FASEB J. 26, 5172-5181 (2012). www.fasebj.org
  •  
4.
  • Lazar, Vladimir, et al. (författare)
  • Integrated molecular portrait of non-small cell lung cancers
  • 2013
  • Ingår i: BMC Medical Genomics. - : Springer Science and Business Media LLC. - 1755-8794. ; 6:1, s. 53-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Non-small cell lung cancer (NSCLC), a leading cause of cancer deaths, represents a heterogeneous group of neoplasms, mostly comprising squamous cell carcinoma (SCC), adenocarcinoma (AC) and large-cell carcinoma (LCC). The objectives of this study were to utilize integrated genomic data including copy-number alteration, mRNA, microRNA expression and candidate-gene full sequencing data to characterize the molecular distinctions between AC and SCC. Methods: Comparative genomic hybridization followed by mutational analysis, gene expression and miRNA microarray profiling were performed on 123 paired tumor and non-tumor tissue samples from patients with NSCLC. Results: At DNA, mRNA and miRNA levels we could identify molecular markers that discriminated significantly between the various histopathological entities of NSCLC. We identified 34 genomic clusters using aCGH data; several genes exhibited a different profile of aberrations between AC and SCC, including PIK3CA, SOX2, THPO, TP63, PDGFB genes. Gene expression profiling analysis identified SPP1, CTHRC1and GREM1 as potential biomarkers for early diagnosis of the cancer, and SPINK1 and BMP7 to distinguish between AC and SCC in small biopsies or in blood samples. Using integrated genomics approach we found in recurrently altered regions a list of three potential driver genes, MRPS22, NDRG1 and RNF7, which were consistently over-expressed in amplified regions, had wide-spread correlation with an average of similar to 800 genes throughout the genome and highly associated with histological types. Using a network enrichment analysis, the targets of these potential drivers were seen to be involved in DNA replication, cell cycle, mismatch repair, p53 signalling pathway and other lung cancer related signalling pathways, and many immunological pathways. Furthermore, we also identified one potential driver miRNA hsa-miR-944. Conclusions: Integrated molecular characterization of AC and SCC helped identify clinically relevant markers and potential drivers, which are recurrent and stable changes at DNA level that have functional implications at RNA level and have strong association with histological subtypes.
  •  
5.
  • Michels, Judith, et al. (författare)
  • Cisplatin Resistance Associated with PARP Hyperactivation
  • 2013
  • Ingår i: Cancer Research. - Philadelphia : American Association for Cancer Research. - 0008-5472 .- 1538-7445. ; 73:7, s. 2271-2280
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-small cell lung carcinoma patients are frequently treated with cisplatin (CDDP), most often yielding temporary clinical responses. Here, we show that PARP1 is highly expressed and constitutively hyperactivated in a majority of human CDDP-resistant cancer cells of distinct histologic origin. Cells manifesting elevated intracellular levels of poly(ADP-ribosyl)ated proteins (PAR(high)) responded to pharmacologic PARP inhibitors as well as to PARP1-targeting siRNAs by initiating a DNA damage response that translated into cell death following the activation of the intrinsic pathway of apoptosis. Moreover, PARP1-overexpressing tumor cells and xenografts displayed elevated levels of PAR, which predicted the response to PARP inhibitors in vitro and in vivo more accurately than PARP1 expression itself. Thus, a majority of CDDP-resistant cancer cells appear to develop a dependency to PARP1, becoming susceptible to PARP inhibitor-induced apoptosis. Cancer Res; 73(7); 2271-80.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy