SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ostgaard N.) "

Sökning: WFRF:(Ostgaard N.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berthomier, M., et al. (författare)
  • Alfven : magnetosphere-ionosphere connection explorers
  • 2012
  • Ingår i: Experimental astronomy. - Dordrecht : Springer. - 0922-6435 .- 1572-9508. ; 33:2-3, s. 445-489
  • Tidskriftsartikel (refereegranskat)abstract
    • The aurorae are dynamic, luminous displays that grace the night skies of Earth's high latitude regions. The solar wind emanating from the Sun is their ultimate energy source, but the chain of plasma physical processes leading to auroral displays is complex. The special conditions at the interface between the solar wind-driven magnetosphere and the ionospheric environment at the top of Earth's atmosphere play a central role. In this Auroral Acceleration Region (AAR) persistent electric fields directed along the magnetic field accelerate magnetospheric electrons to the high energies needed to excite luminosity when they hit the atmosphere. The "ideal magnetohydrodynamics" description of space plasmas which is useful in much of the magnetosphere cannot be used to understand the AAR. The AAR has been studied by a small number of single spacecraft missions which revealed an environment rich in wave-particle interactions, plasma turbulence, and nonlinear acceleration processes, acting on a variety of spatio-temporal scales. The pioneering 4-spacecraft Cluster magnetospheric research mission is now fortuitously visiting the AAR, but its particle instruments are too slow to allow resolve many of the key plasma physics phenomena. The Alfv,n concept is designed specifically to take the next step in studying the aurora, by making the crucial high-time resolution, multi-scale measurements in the AAR, needed to address the key science questions of auroral plasma physics. The new knowledge that the mission will produce will find application in studies of the Sun, the processes that accelerate the solar wind and that produce aurora on other planets.
  •  
2.
  • Branduardi-Raymont, G., et al. (författare)
  • Exploring solar-terrestrial interactions via multiple imaging observers
  • 2022
  • Ingår i: Experimental astronomy. - : Springer Nature. - 0922-6435 .- 1572-9508. ; 54:2-3, s. 361-390
  • Tidskriftsartikel (refereegranskat)abstract
    • How does solar wind energy flow through the Earth's magnetosphere, how is it converted and distributed? is the question we want to address. We need to understand how geomagnetic storms and substorms start and grow, not just as a matter of scientific curiosity, but to address a clear and pressing practical problem: space weather, which can influence the performance and reliability of our technological systems, in space and on the ground, and can endanger human life and health. Much knowledge has already been acquired over the past decades, particularly by making use of multiple spacecraft measuring conditions in situ, but the infant stage of space weather forecasting demonstrates that we still have a vast amount of learning to do. A novel global approach is now being taken by a number of space imaging missions which are under development and the first tantalising results of their exploration will be available in the next decade. In this White Paper, submitted to ESA in response to the Voyage 2050 Call, we propose the next step in the quest for a complete understanding of how the Sun controls the Earth's plasma environment: a tomographic imaging approach comprising two spacecraft in highly inclined polar orbits, enabling global imaging of magnetopause and cusps in soft X-rays, of auroral regions in FUV, of plasmasphere and ring current in EUV and ENA (Energetic Neutral Atoms), alongside in situ measurements. Such a mission, encompassing the variety of physical processes determining the conditions of geospace, will be crucial on the way to achieving scientific closure on the question of solar-terrestrial interactions.
  •  
3.
  • Frey, H. U., et al. (författare)
  • Small and meso-scale properties of a substorm onset auroral arc
  • 2010
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 115, s. A10209-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present small and meso-scale properties of a substorm onset arc observed simultaneously by the Reimei and THEMIS satellites together with ground-based observations by the THEMIS GBO system. The optical observations revealed the slow equatorward motion of the growth-phase arc and the development of a much brighter onset arc poleward of it. Both arcs showed the typical particle signature of electrostatic acceleration in an inverted-V structure together with a strong Alfven wave acceleration signature at the poleward edge of the onset arc. Two THEMIS spacecraft encountered earthward flow bursts around the times the expanding optical aurora reached their magnetic footprints in the ionosphere. The particle and field measurements allowed for the reconstruction of the field-aligned current system and the determination of plasma properties in the auroral source region. Auroral arc properties were extracted from the optical and particle measurements and were used to compare measured values to theoretical predictions of the electrodynamic model for the generation of auroral arcs. Good agreement could be reached for the meso-scale arc properties. A qualitative analysis of the internal structuring of the bright onset arc suggests the operation of the tearing instability which provides a 'rope-like' appearance due to advection of the current in the sheared flow across the arc. We also note that for the observed parameters ionospheric conductivity gradients due to electron precipitation will be unstable to the feedback instability in the ionospheric Alfven resonator that can drive structuring in luminosity over the range of scales observed.
  •  
4.
  • Haaland, S., et al. (författare)
  • Estimating the capture and loss of cold plasma from ionospheric outflow
  • 2012
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 117, s. A07311-
  • Tidskriftsartikel (refereegranskat)abstract
    • An important source of magnetospheric plasma is cold plasma from the terrestrial ionosphere. Low energy ions travel along the magnetic field lines and enter the magnetospheric lobes where they are convected toward the tail plasma sheet. Recent observations indicate that the field aligned ion outflow velocity is sometimes much higher than the convection toward the central plasma sheet. A substantial amount of plasma therefore escapes downtail without ever reaching the central plasma sheet. In this work, we use Cluster measurements of cold plasma outflow and lobe convection velocities combined with models of the magnetic field in an attempt to determine the fate of the outflowing ions and to quantify the amount of plasma lost downtail. The results show that both the circulation of plasma and the direct tailward escape of ions varies significantly with magnetospheric conditions. For strong solar wind driving with a southward interplanetary magnetic field, also typically associated with high geomagnetic activity, most of the outflowing plasma is convected to the plasma sheet and recirculated. For periods with northward interplanetary magnetic field, the convection is nearly stagnant, whereas the outflow, although limited, still persists. The dominant part of the outflowing ions escape downtail and are directly lost into the solar wind under such conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy