SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pöyry Juha) "

Sökning: WFRF:(Pöyry Juha)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kuussaari, Mikko, et al. (författare)
  • Butterfly species’ responses to urbanization : differing effects of human population density and built-up area
  • 2021
  • Ingår i: Urban Ecosystems. - : Springer Science and Business Media LLC. - 1083-8155 .- 1573-1642. ; 24:3, s. 515-527
  • Tidskriftsartikel (refereegranskat)abstract
    • Good knowledge on how increasing urbanization affects biodiversity is essential in order to preserve biodiversity in urban green spaces. We examined how urban development affects species richness and total abundance of butterflies as well as the occurrence and abundance of individual species within the Helsinki metropolitan area in Northern Europe. Repeated butterfly counts in 167 separate 1-km-long transects within Helsinki covered the entire urbanization gradient, quantified by human population density and the proportion of built-up area (within a 50-m buffer surrounding each butterfly transect). We found consistently negative effects of both human population density and built-up area on all studied butterfly variables, though butterflies responded markedly more negatively to increasing human population density than to built-up area. Responses in butterfly species richness and total abundance showed higher variability in relation to proportion of built-up area than to human density, especially in areas of high human density. Increasing human density negatively affected both the abundance and the occurrence of 47% of the 19 most abundant species, whereas, for the proportion of built-up area, the corresponding percentages were 32% and 32%, respectively. Species with high habitat specificity and low mobility showed higher sensitivity to urbanization (especially high human population density) than habitat generalists and mobile species that dominated the urban butterfly communities. Our results suggest that human population density provides a better indicator of urbanization effects on butterflies compared to the proportion of built-up area. The generality of this finding should be verified in other contexts and taxonomic groups.
  •  
2.
  • Merckx, Thomas, et al. (författare)
  • Urbanization extends flight phenology and leads to local adaptation of seasonal plasticity in Lepidoptera
  • 2021
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 118:40
  • Tidskriftsartikel (refereegranskat)abstract
    • Urbanization is gaining force globally, which challenges biodiversity, and it has recently also emerged as an agent of evolutionary change. Seasonal phenology and life cycle regulation are essential processes that urbanization is likely to alter through both the urban heat island effect (UHI) and artificial light at night (ALAN). However, how UHI and ALAN affect the evolution of seasonal adaptations has received little attention. Here, we test for the urban evolution of seasonal life-history plasticity, specifically changes in the photoperiodic induction of diapause in two lepidopterans, Pieris napi (Pieridae) and Chiasmia clathrata (Geometridae). We used long-term data from standardized monitoring and citizen science observation schemes to compare yearly phenological flight curves in six cities in Finland and Sweden to those of adjacent rural populations. This analysis showed for both species that flight seasons are longer and end later in most cities, suggesting a difference in the timing of diapause induction. Then, we used common garden experiments to test whether the evolution of the photoperiodic reaction norm for diapause could explain these phenological changes for a subset of these cities. These experiments demonstrated a genetic shift for both species in urban areas toward a lower daylength threshold for direct development, consistent with predictions based on the UHI but not ALAN. The correspondence of this genetic change to the results of our larger-scale observational analysis of in situ flight phenology indicates that it may be widespread. These findings suggest that seasonal life cycle regulation evolves in urban ectotherms and may contribute to ecoevolutionary dynamics in cities.
  •  
3.
  • Antão, Laura H., et al. (författare)
  • Climate change reshuffles northern species within their niches
  • 2022
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 12:6, s. 587-592
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change is a pervasive threat to biodiversity. While range shifts are a known consequence of climate warming contributing to regional community change, less is known about how species’ positions shift within their climatic niches. Furthermore, whether the relative importance of different climatic variables prompting such shifts varies with changing climate remains unclear. Here we analysed four decades of data for 1,478 species of birds, mammals, butterflies, moths, plants and phytoplankton along a 1,200 km high latitudinal gradient. The relative importance of climatic drivers varied non-uniformly with progressing climate change. While species turnover among decades was limited, the relative position of species within their climatic niche shifted substantially. A greater proportion of species responded to climatic change at higher latitudes, where changes were stronger. These diverging climate imprints restructure a full biome, making it difficult to generalize biodiversity responses and raising concerns about ecosystem integrity in the face of accelerating climate change.
  •  
4.
  • Clough, Yann, et al. (författare)
  • Density of insect-pollinated grassland plants decreases with increasing surrounding land-use intensity
  • 2014
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 17:9, s. 1168-1177
  • Tidskriftsartikel (refereegranskat)abstract
    • Pollinator declines have raised concerns about the persistence of plant species that depend on insect pollination, in particular by bees, for their reproduction. The impact of pollinator declines remains unknown for species-rich plant communities found in temperate seminatural grasslands. We investigated effects of land-use intensity in the surrounding landscape on the distribution of plant traits related to insect pollination in 239 European seminatural grasslands. Increasing arable land use in the surrounding landscape consistently reduced the density of plants depending on bee and insect pollination. Similarly, the relative abundance of bee-pollination-dependent plants increased with higher proportions of non-arable agricultural land (e.g. permanent grassland). This was paralleled by an overall increase in bee abundance and diversity. By isolating the impact of the surrounding landscape from effects of local habitat quality, we show for the first time that grassland plants dependent on insect pollination are particularly susceptible to increasing land-use intensity in the landscape.
  •  
5.
  • Dainese, Matteo, et al. (författare)
  • Landscape simplification weakens the association between terrestrial producer and consumer diversity in Europe
  • 2017
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 23:8, s. 3040-3051
  • Tidskriftsartikel (refereegranskat)abstract
    • Land-use change is one of the primary drivers of species loss, yet little is known about its effect on other components of biodiversity that may be at risk. Here, we ask whether, and to what extent, landscape simplification, measured as the percentage of arable land in the landscape, disrupts the functional and phylogenetic association between primary producers and consumers. Across seven European regions, we inferred the potential associations (functional and phylogenetic) between host plants and butterflies in 561 seminatural grasslands. Local plant diversity showed a strong bottom-up effect on butterfly diversity in the most complex landscapes, but this effect disappeared in simple landscapes. The functional associations between plant and butterflies are, therefore, the results of processes that act not only locally but are also dependent on the surrounding landscape context. Similarly, landscape simplification reduced the phylogenetic congruence among host plants and butterflies indicating that closely related butterflies become more generalist in the resources used. These processes occurred without any detectable change in species richness of plants or butterflies along the gradient of arable land. The structural properties of ecosystems are experiencing substantial erosion, with potentially pervasive effects on ecosystem functions and future evolutionary trajectories. Loss of interacting species might trigger cascading extinction events and reduce the stability of trophic interactions, as well as influence the longer term resilience of ecosystem functions. This underscores a growing realization that species richness is a crude and insensitive metric and that both functional and phylogenetic associations, measured across multiple trophic levels, are likely to provide additional and deeper insights into the resilience of ecosystems and the functions they provide.
  •  
6.
  • Hambäck, Peter, et al. (författare)
  • Allometric density responses in butterflies : the response to small and large patches by small and large species
  • 2010
  • Ingår i: Ecography. - : Blackwell. - 0906-7590 .- 1600-0587. ; 33:6, s. 1149-1156
  • Tidskriftsartikel (refereegranskat)abstract
    • Species are differentially affected by habitat fragmentation as a consequence of differences in mobility, area requirements, use of the matrix, and responses to edges. A quantitative understanding of these differences is essential not only for conservation biology but also for basic ecological theory. Here, we examine density responses by butterflies to patch size and use a quantitative theory on the scaling of population density with patch size to interpret results. Theory suggests that the density distribution of mobile species along a patch size gradient should depend on the scaling of net migration rates, whereas the density distribution of less mobile species should depend more on local growth. Using data from 11 localities in three European countries, we calculated the slope in the relationship between patch size and population density. These slopes were evaluated in relation to butterfly traits and matrix composition. As estimates of butterfly mobility we used both wing span and expert mobility rankings. The slope of the density–area relationship changed as predicted with wing span and the association of species to grasslands. Large and highly mobile species had a negative slope, similarly for grassland specialists and generalist species, and the slope matched quantitative predictions based on the scaling of net migration rates. Small and less mobile grassland specialists had a slope that was less negative than the slope of large and mobile grassland specialists, whereas the slope did not change with size for generalist species. These analyses suggest that the variability in response among butterfly species to patch size could be explained by accounting for body size/mobility and habitat associations among species. A caveat is that edge effects are not explicitly included in the model analysis, and future research should aim to combine area and edge effects in a common theoretical framework.
  •  
7.
  • Maes, Dirk, et al. (författare)
  • Integrating national Red Lists for prioritising conservation actions for European butterflies
  • 2019
  • Ingår i: Journal of Insect Conservation. - : Springer Science and Business Media LLC. - 1366-638X .- 1572-9753. ; 23:2, s. 301-330
  • Tidskriftsartikel (refereegranskat)abstract
    • Red Lists are very valuable tools in nature conservation at global, continental and (sub-) national scales. In an attempt to prioritise conservation actions for European butterflies, we compiled a database with species lists and Red Lists of all European countries, including the Macaronesian archipelagos (Azores, Madeira and Canary Islands). In total, we compiled national species lists for 42 countries and national Red Lists for 34 of these. The most species-rich countries in Europe are Italy, Russia and France with more than 250 species each. Endemic species are mainly found on the Macaronesian archipelagos and on the Mediterranean islands. By attributing numerical values proportionate to the threat statuses in the different national Red List categories, we calculated a mean Red List value for every country (cRLV) and a weighted Red List value for every species (wsRLV) using the square root of the country’s area as a weighting factor. Countries with the highest cRLV were industrialised (NW) European countries such as the Netherlands, Belgium, the Czech Republic and Denmark, whereas large Mediterranean countries such as Spain and Italy had the lowest cRLV. Species for which a Red List assessment was available in at least two European countries and with a relatively high wsRLV (≥ 50) are Colias myrmidone, Pseudochazara orestes, Tomares nogelii, Colias chrysotheme and Coenonympha oedippus. We compared these wsRLVs with the species statuses on the European Red List to identify possible mismatches. We discuss how this complementary method can help to prioritise butterfly conservation on the continental and/or the (sub-)national scale.
  •  
8.
  • Pilotto, Francesca, et al. (författare)
  • Meta-analysis of multidecadal biodiversity trends in Europe
  • 2020
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Local biodiversity trends over time are likely to be decoupled from global trends, as local processes may compensate or counteract global change. We analyze 161 long-term biological time series (15-91 years) collected across Europe, using a comprehensive dataset comprising ~6,200 marine, freshwater and terrestrial taxa. We test whether (i) local long-term biodiversity trends are consistent among biogeoregions, realms and taxonomic groups, and (ii) changes in biodiversity correlate with regional climate and local conditions. Our results reveal that local trends of abundance, richness and diversity differ among biogeoregions, realms and taxonomic groups, demonstrating that biodiversity changes at local scale are often complex and cannot be easily generalized. However, we find increases in richness and abundance with increasing temperature and naturalness as well as a clear spatial pattern in changes in community composition (i.e. temporal taxonomic turnover) in most biogeoregions of Northern and Eastern Europe. The global biodiversity decline might conceal complex local and group-specific trends. Here the authors report a quantitative synthesis of longterm biodiversity trends across Europe, showing how, despite overall increase in biodiversity metric and stability in abundance, trends differ between regions, ecosystem types, and taxa.
  •  
9.
  • Pöyry, Juha, et al. (författare)
  • The effects of soil eutrophication propagate to higher trophic levels
  • 2017
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 26:1, s. 18-30
  • Tidskriftsartikel (refereegranskat)abstract
    • AimNitrogen deposition is a major global driver of change in plant communities, but its impacts on higher trophic levels are insufficiently understood. Here, we introduce and test a novel conceptual trait-based model describing how the effects of soil eutrophication cascade to higher trophic levels across differential plant–herbivore interactions.LocationNorthern Europe.MethodsWe synthesize previous literature on the effects of nitrogen on plants and herbivorous insects as well as relevant multispecies patterns of insect communities concerning species dietary breadth, body size, dispersal propensity and voltinism in order to derive the model. We empirically evaluate the proposed, hitherto untested, four main model pathways using statistical modelling and data on 1064 northern European butterfly and moth species, their life-history traits, phylogeny and population trends.ResultsWe show that across all species: (1) larval dietary breadth and host plant foliar nitrogen content are positively and equally strongly related to insect body size, and that (2) multivoltinism, host plant preferences for soil nitrogen, body size and larval dietary breadth are positively related to population trends of butterflies and moths as predicted by the model. Positive relationships between plant foliar nitrogen content and body size as well as multivoltinism and population trends are the first multispecies demonstrations for these patterns.Main conclusionsSoil nitrogen enrichment amplifies the diverging trends of herbivorous insects feeding on nitrophilous versus nitrophobous plants through differential plant–herbivore interactions, causing predictable changes in community composition at higher trophic levels. A positive foliar nitrogen–insect body size relationship, now empirically supported, is the integrating link within this cascade. As nitrogen deposition is a global driver, our model suggests that a major future trend may be an increased dominance of insects that are large, dispersive, multivoltine, dietary generalists or specialized on nitrophilous plant species at the expense of species preferring oligotrophic environments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy