SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pantel K.) "

Sökning: WFRF:(Pantel K.)

  • Resultat 1-25 av 28
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Munn-Chernoff, M. A., et al. (författare)
  • Shared genetic risk between eating disorder- and substance-use-related phenotypes: Evidence from genome-wide association studies
  • 2021
  • Ingår i: Addiction Biology. - : Wiley. - 1355-6215 .- 1369-1600. ; 26:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Eating disorders and substance use disorders frequently co-occur. Twin studies reveal shared genetic variance between liabilities to eating disorders and substance use, with the strongest associations between symptoms of bulimia nervosa and problem alcohol use (genetic correlation [r(g)], twin-based = 0.23-0.53). We estimated the genetic correlation between eating disorder and substance use and disorder phenotypes using data from genome-wide association studies (GWAS). Four eating disorder phenotypes (anorexia nervosa [AN], AN with binge eating, AN without binge eating, and a bulimia nervosa factor score), and eight substance-use-related phenotypes (drinks per week, alcohol use disorder [AUD], smoking initiation, current smoking, cigarettes per day, nicotine dependence, cannabis initiation, and cannabis use disorder) from eight studies were included. Significant genetic correlations were adjusted for variants associated with major depressive disorder and schizophrenia. Total study sample sizes per phenotype ranged from similar to 2400 to similar to 537 000 individuals. We used linkage disequilibrium score regression to calculate single nucleotide polymorphism-based genetic correlations between eating disorder- and substance-use-related phenotypes. Significant positive genetic associations emerged between AUD and AN (r(g) = 0.18; false discovery rate q = 0.0006), cannabis initiation and AN (r(g) = 0.23; q < 0.0001), and cannabis initiation and AN with binge eating (r(g) = 0.27; q = 0.0016). Conversely, significant negative genetic correlations were observed between three nondiagnostic smoking phenotypes (smoking initiation, current smoking, and cigarettes per day) and AN without binge eating (r(gs) = -0.19 to -0.23; qs < 0.04). The genetic correlation between AUD and AN was no longer significant after co-varying for major depressive disorder loci. The patterns of association between eating disorder- and substance-use-related phenotypes highlights the potentially complex and substance-specific relationships among these behaviors.
  •  
2.
  • Bryois, J., et al. (författare)
  • Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson’s disease
  • 2020
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 52:5, s. 482-493
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies have discovered hundreds of loci associated with complex brain disorders, but it remains unclear in which cell types these loci are active. Here we integrate genome-wide association study results with single-cell transcriptomic data from the entire mouse nervous system to systematically identify cell types underlying brain complex traits. We show that psychiatric disorders are predominantly associated with projecting excitatory and inhibitory neurons. Neurological diseases were associated with different cell types, which is consistent with other lines of evidence. Notably, Parkinson’s disease was genetically associated not only with cholinergic and monoaminergic neurons (which include dopaminergic neurons) but also with enteric neurons and oligodendrocytes. Using post-mortem brain transcriptomic data, we confirmed alterations in these cells, even at the earliest stages of disease progression. Our study provides an important framework for understanding the cellular basis of complex brain maladies, and reveals an unexpected role of oligodendrocytes in Parkinson’s disease. © 2020, The Author(s), under exclusive licence to Springer Nature America, Inc.
  •  
3.
  • Watson, H. J., et al. (författare)
  • Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa
  • 2019
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 51:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Characterized primarily by a low body-mass index, anorexia nervosa is a complex and serious illness(1), affecting 0.9-4% of women and 0.3% of men(2-4), with twin-based heritability estimates of 50-60%(5). Mortality rates are higher than those in other psychiatric disorders(6), and outcomes are unacceptably poor(7). Here we combine data from the Anorexia Nervosa Genetics Initiative (ANGI)(8,9) and the Eating Disorders Working Group of the Psychiatric Genomics Consortium (PGC-ED) and conduct a genome-wide association study of 16,992 cases of anorexia nervosa and 55,525 controls, identifying eight significant loci. The genetic architecture of anorexia nervosa mirrors its clinical presentation, showing significant genetic correlations with psychiatric disorders, physical activity, and metabolic (including glycemic), lipid and anthropometric traits, independent of the effects of common variants associated with body-mass index. These results further encourage a reconceptualization of anorexia nervosa as a metabo-psychiatric disorder. Elucidating the metabolic component is a critical direction for future research, and paying attention to both psychiatric and metabolic components may be key to improving outcomes.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Bailey, D. L., et al. (författare)
  • Combined PET/MRI : Global Warming-Summary Report of the 6th International Workshop on PET/MRI, March 27-29, 2017, Tubingen, Germany
  • 2018
  • Ingår i: Molecular Imaging and Biology. - : SPRINGER. - 1536-1632 .- 1860-2002. ; 20:1, s. 4-20
  • Forskningsöversikt (refereegranskat)abstract
    • The 6th annual meeting to address key issues in positron emission tomography (PET)/magnetic resonance imaging (MRI) was held again in Tubingen, Germany, from March 27 to 29, 2017. Over three days of invited plenary lectures, round table discussions and dialogue board deliberations, participants critically assessed the current state of PET/MRI, both clinically and as a research tool, and attempted to chart future directions. The meeting addressed the use of PET/MRI and workflows in oncology, neurosciences, infection, inflammation and chronic pain syndromes, as well as deeper discussions about how best to characterise the tumour microenvironment, optimise the complementary information available from PET and MRI, and how advanced data mining and bioinformatics, as well as information from liquid biomarkers (circulating tumour cells and nucleic acids) and pathology, can be integrated to give a more complete characterisation of disease phenotype. Some issues that have dominated previous meetings, such as the accuracy of MR-based attenuation correction (AC) of the PET scan, were finally put to rest as having been adequately addressed for the majority of clinical situations. Likewise, the ability to standardise PET systems for use in multicentre trials was confirmed, thus removing a perceived barrier to larger clinical imaging trials. The meeting openly questioned whether PET/MRI should, in all cases, be used as a whole-body imaging modality or whether in many circumstances it would best be employed to give an in-depth study of previously identified disease in a single organ or region. The meeting concluded that there is still much work to be done in the integration of data from different fields and in developing a common language for all stakeholders involved. In addition, the participants advocated joint training and education for individuals who engage in routine PET/MRI. It was agreed that PET/MRI can enhance our understanding of normal and disrupted biology, and we are in a position to describe the in vivo nature of disease processes, metabolism, evolution of cancer and the monitoring of response to pharmacological interventions and therapies. As such, PET/MRI is a key to advancing medicine and patient care.
  •  
10.
  • Chen, S. K., et al. (författare)
  • Catch and Release: rare cell analysis from a functionalised medical wire
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Enumeration and especially molecular characterization of circulating tumour cells (CTCs) holds great promise for cancer management. We tested a modified type of an in vivo enrichment device (Catch& Release) for its ability to bind and detach cancer cells for the purpose of single-cell molecular downstream analysis in vitro. The evaluation showed that single-cell analysis using array comparative genome hybridization (array-CGH) and next generation sequencing (NGS) is feasible. We found array-CGH to be less noisy when whole genome amplification (WGA) was performed with Ampli1 as compared to GenomePlex (DLRS values 0.65 vs. 1.39). Moreover, Ampli1-processed cells allowed detection of smaller aberrations (median 14.0 vs. 49.9 Mb). Single-cell NGS data obtained from Ampli1-processed samples showed the expected non-synonymous mutations (deletion/SNP) according to bulk DNA. We conclude that clinical application of this refined in vivo enrichment device allows CTC enumeration and characterization, thus, representing a promising tool for personalized medicine.
  •  
11.
  • Chen, S. K., et al. (författare)
  • Target Cell Pre-enrichment and Whole Genome Amplification for Single Cell Downstream Characterization
  • 2018
  • Ingår i: Jove-Journal of Visualized Experiments. - : MyJove Corporation. - 1940-087X. ; :135
  • Tidskriftsartikel (refereegranskat)abstract
    • Rare target cells can be isolated from a high background of non-target cells using antibodies specific for surface proteins of target cells. A recently developed method uses a medical wire functionalized with anti-epithelial cell adhesion molecule (EpCAM) antibodies for in vivo isolation of circulating tumor cells (CTCs)(1). A patient-matched cohort in non-metastatic prostate cancer showed that the in vivo isolation technique resulted in a higher percentage of patients positive for CTCs as well as higher CTC counts as compared to the current gold standard in CTC enumeration. As cells cannot be recovered from current medical devices, a new functionalized wire (referred to as Device) was manufactured allowing capture and subsequent detachment of cells by enzymatic treatment. Cells are allowed to attach to the Device, visualized on a microscope and detached using enzymatic treatment. Recovered cells are cytocentrifuged onto membrane-coated slides and harvested individually by means of laser microdissection or micromanipulation. Single-cell samples are then subjected to single-cell whole genome amplification allowing multiple downstream analysis including screening and target-specific approaches. The procedure of isolation and recovery yields high quality DNA from single cells and does not impair subsequent whole genome amplification (WGA). A single cell's amplified DNA can be forwarded to screening and/or targeted analysis such as array comparative genome hybridization (array-CGH) or sequencing. The device allows ex vivo isolation from artificial rare cell samples (i.e. 500 target cells spiked into 5 mL of peripheral blood). Whereas detachment rates of cells are acceptable (50 - 90%), the recovery rate of detached cells onto slides spans a wide range dependent on the cell line used (< 10 - > 50%) and needs some further attention. This device is not cleared for the use in patients.
  •  
12.
  • Hoshino, Ayuko, et al. (författare)
  • Tumour exosome integrins determine organotropic metastasis
  • 2015
  • Ingår i: Nature. - : NATURE PUBLISHING GROUP. - 0028-0836 .- 1476-4687. ; 527:7578, s. 329-
  • Tidskriftsartikel (refereegranskat)abstract
    • Ever since Stephen Pagets 1889 hypothesis, metastatic organotropism has remained one of cancers greatest mysteries. Here we demonstrate that exosomes from mouse and human lung-, liver-and brain-tropic tumour cells fuse preferentially with resident cells at their predicted destination, namely lung fibroblasts and epithelial cells, liver Kupffer cells and brain endothelial cells. We show that tumour-derived exosomes uptaken by organ-specific cells prepare the pre-metastatic niche. Treatment with exosomes from lung-tropic models redirected the metastasis of bone-tropic tumour cells. Exosome proteomics revealed distinct integrin expression patterns, in which the exosomal integrins alpha(6)beta(4) and alpha(6)beta(1) were associated with lung metastasis, while exosomal integrin alpha(v)beta(5) was linked to liver metastasis. Targeting the integrins alpha(6)beta(4) and alpha(v)beta(5) decreased exosome uptake, as well as lung and liver metastasis, respectively. We demonstrate that exosome integrin uptake by resident cells activates Src phosphorylation and pro-inflammatory S100 gene expression. Finally, our clinical data indicate that exosomal integrins could be used to predict organ-specific metastasis.
  •  
13.
  •  
14.
  •  
15.
  • Watson, Hunna J., et al. (författare)
  • Common Genetic Variation and Age of Onset of Anorexia Nervosa
  • 2022
  • Ingår i: BIOLOGICAL PSYCHIATRY: GLOBAL OPEN SCIENCE. - : Elsevier BV. - 2667-1743. ; 2:4, s. 368-378
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Genetics and biology may influence the age of onset of anorexia nervosa (AN). The aims of this study were to determine whether common genetic variation contributes to age of onset of AN and to investigate the genetic associations between age of onset of AN and age at menarche.METHODS: A secondary analysis of the Psychiatric Genomics Consortium genome-wide association study (GWAS) of AN was performed, which included 9335 cases and 31,981 screened controls, all from European ancestries. We conducted GWASs of age of onset, early-onset AN (,13 years), and typical-onset AN, and genetic correlation, genetic risk score, and Mendelian randomization analyses.RESULTS: Two loci were genome-wide significant in the typical-onset AN GWAS. Heritability estimates (single nucleotide polymorphism-h2) were 0.01-0.04 for age of onset, 0.16-0.25 for early-onset AN, and 0.17-0.25 for typical-onset AN. Early-and typical-onset AN showed distinct genetic correlation patterns with putative risk factors for AN. Specifically, early-onset AN was significantly genetically correlated with younger age at menarche, and typical-onset AN was significantly negatively genetically correlated with anthropometric traits. Genetic risk scores for age of onset and early-onset AN estimated from independent GWASs significantly predicted age of onset. Mendelian randomization analysis suggested a causal link between younger age at menarche and early -onset AN.CONCLUSIONS: Our results provide evidence consistent with a common variant genetic basis for age of onset and implicate biological pathways regulating menarche and reproduction.
  •  
16.
  •  
17.
  •  
18.
  • Holliday, Katelyn M., et al. (författare)
  • Gaseous air pollutants and DNA methylation in a methylome-wide association study of an ethnically and environmentally diverse population of US adults
  • 2022
  • Ingår i: Environmental Research. - : Elsevier. - 0013-9351 .- 1096-0953. ; 212
  • Tidskriftsartikel (refereegranskat)abstract
    • Epigenetic mechanisms may underlie air pollution-health outcome associations. We estimated gaseous air pollutant-DNA methylation (DNAm) associations using twelve subpopulations within Women's Health Initiative (WHI) and Atherosclerosis Risk in Communities (ARIC) cohorts (n = 8397; mean age 61.3 years; 83% female; 46% African-American, 46% European-American, 8% Hispanic/Latino). We used geocoded participant address-specific mean ambient carbon monoxide (CO), nitrogen oxides (NO2; NOx), ozone (O-3), and sulfur dioxide (SO2) concentrations estimated over the 2-, 7-, 28-, and 365-day periods before collection of blood samples used to generate Illumina 450 k array leukocyte DNAm measurements. We estimated methylome-wide, subpopulation-and race/ethnicity-stratified pollutant-DNAm associations in multi-level, linear mixed-effects models adjusted for sociodemographic, behavioral, meteorological, and technical covariates. We combined stratum-specific estimates in inverse variance-weighted meta-analyses and characterized significant associations (false discovery rate; FDR<0.05) at Cytosine-phosphate-Guanine (CpG) sites without among-strata heterogeneity (P-Cochran's Q > 0.05). We attempted replication in the Cooperative Health Research in Region of Augsburg (KORA) study and Normative Aging Study (NAS). We observed a -0.3 (95% CI: -0.4, -0.2) unit decrease in percent DNAm per interquartile range (IQR, 7.3 ppb) increase in 28-day mean NO2 concentration at cg01885635 (chromosome 3; regulatory region 290 bp upstream from ZNF621; FDR = 0.03). At intragenic sites cg21849932 (chromosome 20; LIME1; intron 3) and cg05353869 (chromosome 11; KLHL35; exon 2), we observed a -0.3 (95% CI: -0.4, -0.2) unit decrease (FDR = 0.04) and a 1.2 (95% CI: 0.7, 1.7) unit increase (FDR = 0.04), respectively, in percent DNAm per IQR (17.6 ppb) increase in 7-day mean ozone concentration. Results were not fully replicated in KORA and NAS. We identified three CpG sites potentially susceptible to gaseous air pollution-induced DNAm changes near genes relevant for cardiovascular and lung disease. Further harmonized investigations with a range of gaseous pollutants and averaging durations are needed to determine the effect of gaseous air pollutants on DNA methylation and ultimately gene expression.
  •  
19.
  •  
20.
  •  
21.
  • Lohr, JM, et al. (författare)
  • Five plus Three for the Pancreas
  • 2023
  • Ingår i: Clinical cancer research : an official journal of the American Association for Cancer Research. - 1557-3265. ; 29:8, s. 1387-1389
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
22.
  • Löhr, JM, et al. (författare)
  • Five plus Three for the Pancreas
  • 2023
  • Ingår i: Clinical cancer research : an official journal of the American Association for Cancer Research. - 1557-3265. ; 29:8, s. 1387-1389
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
23.
  •  
24.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 28

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy