SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Papadimitriou Alexandros) "

Sökning: WFRF:(Papadimitriou Alexandros)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Marco, Maugeri, 1983, et al. (författare)
  • Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells
  • 2019
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • RNA-based therapeutics hold great promise for treating diseases and lipid nanoparticles (LNPs) represent the most advanced platform for RNA delivery. However, the fate of the LNP-mRNA after endosome-engulfing and escape from the autophagy-lysosomal pathway remains unclear. To investigate this, mRNA (encoding human erythropoietin) was delivered to cells using LNPs, which shows, for the first time, a link between LNP-mRNA endocytosis and its packaging into extracellular vesicles (endo-EVs: secreted after the endocytosis of LNP-mRNA). Endosomal escape of LNP-mRNA is dependent on the molar ratios between ionizable lipids and mRNA nucleotides. Our results show that fractions of ionizable lipids and mRNA (1:1 molar ratio of hEPO mRNA nucleotides:ionizable lipids) of endocytosed LNPs were detected in endo-EVs. Importantly, these EVs can protect the exogenous mRNA during in vivo delivery to produce human protein in mice, detected in plasma and organs. Compared to LNPs, endo-EVs cause lower expression of inflammatory cytokines.
  •  
2.
  • Petalas, Alexandros, 1986, et al. (författare)
  • SANISAND-F: Sand constitutive model with evolving fabric anisotropy
  • 2020
  • Ingår i: International Journal of Solids and Structures. - : Elsevier BV. - 0020-7683. ; 188-189, s. 12-31
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to incorporate the very important role of evolving fabric anisotropy on the mechanical response of sand, a constitutive model is developed within the frameworks of Bounding Surface plasticity and Anisotropic Critical State Theory in multiaxial stress space. The main new constitutive ingredient is a fabric anisotropy variable A, a scalar measure of the relative orientation between an evolving fabric tensor F and the deviatoric plastic strain rate direction. The variable A affects scalar ingredients of the model quantifying the plastic strain rate, i.e. the plastic modulus and the dilatancy. A comprehensive calibration procedure is fully described and an extensive validation is performed against a very large dataset from 55 monotonic element tests on Toyoura sand provided by various laboratories, loaded under drained and undrained conditions. The introduction of A into the model is the main reason why successful simulation of data is achieved for loading at various orientations of the stress tensor under otherwise same initial conditions of void ratio and confining pressure, and this even if the data often exhibit huge difference of response because of the difference in loading orientation.
  •  
3.
  • Petalas, Alexandros, 1986, et al. (författare)
  • SANISAND-FN: An evolving fabric-based sand model accounting for stress principal axes rotation
  • 2019
  • Ingår i: International Journal for Numerical and Analytical Methods in Geomechanics. - : Wiley. - 0363-9061 .- 1096-9853. ; 43:1, s. 97-123
  • Tidskriftsartikel (refereegranskat)abstract
    • SANISAND is the name of a family of bounding surface plasticity constitutive models for sand within the framework of critical state theory, which have been able to realistically simulate the sand behavior under conventional monotonic and cyclic loading paths. In order to incorporate the important role of evolving fabric anisotropy, one such model was modified within the framework of the new anisotropic critical state theory and named SANISAND-F model. Yet the response under continuous stress principal axes rotation requires further modification to account for the effect of ensuing noncoaxiality on the dilatancy and plastic modulus. This modification is simpler than what is often proposed in the literature, since it does not incorporate an additional plastic loading mechanism and/or multiple dilatancy and plastic modulus expressions. The new model named SANISAND-FN is presented herein and is validated against published data for loading that includes drained stress principal axes rotation on Toyoura sand.
  •  
4.
  • Statello, Luisa, et al. (författare)
  • Identification of RNA-binding proteins in exosomes capable of interacting with different types of RNA: RBP-facilitated transport of RNAs into exosomes.
  • 2018
  • Ingår i: PLoS One. - : Public Library of Science (PLoS). - 1932-6203. ; 13:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The RNA that is packaged into exosomes is termed as exosomal-shuttle RNA (esRNA); however, the players, which take this subset of RNA (esRNA) into exosomes, remain largely unknown. We hypothesized that RNA binding proteins (RBPs) could serve as key players in this mechanism, by making complexes with RNAs and transporting them into exosomes during the biosynthesis of exosomes. Here, we demonstrate the presence of 30 RBPs in exosomes that were shown to form RNA-RBP complexes with both cellular RNA and exosomal-RNA species. To assess the involvement of these RBPs in RNA-transfer into exosomes, the gene transcripts encoding six of the proteins identified in exosomes (HSP90AB1, XPO5, hnRNPH1, hnRNPM, hnRNPA2B1, and MVP) were silenced by siRNA and subsequent effect on esRNA was assessed. A significant reduction of total esRNA was observed by post-transcriptional silencing of MVP, compared to other RBPs. Furthermore, to confirm the binding of MVP with esRNA, a biotinylated-MVP was transiently expressed in HEK293F cells. Higher levels of esRNA were recovered from MVP that was eluted from exosomes of transfected cells, as compared to those of non-transfected cells. Our data indicate that these RBPs could end up in exosomes together with RNA molecules in the form of RNA-ribonucleoprotein complexes, which could be important for the transport of RNAs into exosomes and the maintenance of RNAs inside exosomes. This type of maintenance may favor the shuttling of RNAs from exosomes to recipient cells in the form of stable complexes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy