SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Patnaik S.) "

Sökning: WFRF:(Patnaik S.)

  • Resultat 1-25 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Bosson, J. K., et al. (författare)
  • Psychometric Properties and Correlates of Precarious Manhood Beliefs in 62 Nations
  • 2021
  • Ingår i: Journal of Cross-Cultural Psychology. - : SAGE Publications. - 0022-0221 .- 1552-5422. ; 52:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Precarious manhood beliefs portray manhood, relative to womanhood, as a social status that is hard to earn, easy to lose, and proven via public action. Here, we present cross-cultural data on a brief measure of precarious manhood beliefs (the Precarious Manhood Beliefs scale [PMB]) that covaries meaningfully with other cross-culturally validated gender ideologies and with country-level indices of gender equality and human development. Using data from university samples in 62 countries across 13 world regions (N = 33,417), we demonstrate: (1) the psychometric isomorphism of the PMB (i.e., its comparability in meaning and statistical properties across the individual and country levels); (2) the PMB's distinctness from, and associations with, ambivalent sexism and ambivalence toward men; and (3) associations of the PMB with nation-level gender equality and human development. Findings are discussed in terms of their statistical and theoretical implications for understanding widely-held beliefs about the precariousness of the male gender role.
  •  
6.
  • Sharma, H S, et al. (författare)
  • Antibodies to serotonin attenuate closed head injury induced blood brain barrier disruption and brain pathology
  • 2007
  • Ingår i: Annals of the New York Academy of Sciences. - : Wiley. - 0077-8923 .- 1749-6632. ; 1122, s. 295-312
  • Tidskriftsartikel (refereegranskat)abstract
    • Closed head injury (CHI) often results in profound brain swelling and instant death of the victims due to compression of the vital centers. However, the neurochemical basis of edema formation in CHI is still obscure. Previous studies from our laboratory show that blockade of serotonin synthesis prior to CHI in a rat model attenuates brain edema, indicating a prominent role for serotonin in head injury. Thus, neutralization of endogenous serotonin activity and/or blocking of its receptors will induce neuroprotection in CHI. Since serotonin has more than 14 receptors and selective serotonin antagonists are still not available, we used serotonin antiserum to neutralize its in vivo effects before or after CHI in a rat model. CHI was produced by an impact of 0.224 N on the right parietal skull bone under Equithesin anesthesia by dropping a weight of 114.6 g from a height of 20 cm through a guide tube. This concussive brain injury resulted in blood–brain barrier (BBB) disruption, brain edema formation, and volume swelling at 5 h that were most pronounced in the contralateral cerebral hemisphere. The plasma and brain serotonin levels were increased several-fold at this time. Intracerebroventricular administration of serotonin antiserum (1:20, monoclonal) into the left lateral cerebral ventricle (30 μL in PBS) 30 min before or 30 min (but not 60 min) after CHI significantly attenuated BBB disruption, brain edema formation, volume swelling, and brain pathology. The plasma and brain serotonin levels continued to remain high. These observations are the first to suggest that antiserum to serotonin when administered into the CSF during the early phase of CHI are capable of inducing neuroprotection.
  •  
7.
  •  
8.
  •  
9.
  • Figueroa, D., et al. (författare)
  • Return to sport soccer after anterior cruciate ligament reconstruction: ISAKOS consensus
  • 2022
  • Ingår i: Journal of ISAKOS. - : Elsevier BV. - 2059-7754. ; 7:6, s. 150-161
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Many factors can affect the return to pivoting sports, after an Anterior Cruciate Ligament Reconstruction. Prehabilitation, rehabilitation, surgical and psychological aspects play an essential role in the decision to return to sports. The purpose of this study is to reach an international consensus about the best conditions for returning to sports in soccer—one of the most demanding level I pivoting sports after anterior cruciate ligament (ACL) reconstruction. Methods: 34 International experts in the management of ACL injuries, representing all the Continents were convened and participated in a process based on the Delphi method to achieve a consensus. 37 statements related to ACL reconstruction were reviewed by the experts in three rounds of surveys in complete anonymity. The statements were prepared by the working group based on previous literature or systematic reviews. Rating agreement through a Likert Scale: strongly agree, agree, neither agree or disagree, disagree and strongly disagree was used. To define consensus, it was established that the assertions should achieve a 75% of agreement or disagreement. Results: Of the 37 statements, 10 achieved unanimous consensus, 18 non-unanimous consensus and 9 did not achieve consensus. In the preoperative, the correction of the range of motion deficit, the previous high level of participation in sports and a better knowledge of the injury by the patient and compliance to participate in Rehabilitation were the statements that reached unanimous consensus. During the surgery, the treatment of associated injuries, as well as the use of autografts, and the addition of a lateral extra-articular tenodesis in some particular cases (active young athletes, <25 years old, hyperlaxity, high rotatory laxity and revision cases) obtained also 100% consensus. In the postoperative period, psychological readiness and its validation with scales, adequate physical preparation, as well as not basing the RTSS purely on the time of evolution after surgery, were the factors that reached unanimous Consensus. Conclusions: The consensus statements derived from this international ISAKOS leaders, may assist clinicians in deciding when to return to sports soccer in patients after an ACL reconstruction. Those statements that reached 100% consensus have to be strongly considered in the final decision to RTS soccer. © 2022 The Authors
  •  
10.
  • Sharma, Hari Shanker, et al. (författare)
  • Antibodies to Dynorphin A (1-17) Attenuate Closed Head Injury Induced Blood-Brain Barrier Disruption, Brain Edema Formation and Brain Pathology in the Rat
  • 2010
  • Ingår i: Brain Edema XIV. - Vienna : Springer. - 9783211987582 - 9783211988114 ; , s. 301-306
  • Konferensbidrag (refereegranskat)abstract
    • The potential neuroprotective efficacy of dynorphin A antiserum on BBB dysfunction, edema formation and brain pathology was examined in a closed head injury (CHI) model in the rat. The CHI was produced by an impact of 0.224 N on the right parietal bone under anesthesia by dropping a weight of 114.6 g on the skull from a height of 20 cm through a guide tube. This concussive brain injury resulted in profound BBB disruption as evidenced by leakage of Evans blue and radioiodine in the brain. Edema formation and swelling at 5 h were most pronounced in the contralateral cerebral hemisphere. Pretreatment with dynorphin A antiserum (1:20, monoclonal) infused into the left lateral cerebral ventricle (30 mu L in PBS) either 30 min before or 30 min after CHI significantly attenuated BBB dysfunction, brain edema formation, volume swelling and brain pathology. However, no reduction in brain edema, BBB permeability or improved brain pathology was seen when the antiserum was given 60 min post-CHI. These observations are the first to suggest that antiserum to dynorphin when administered into the CSF during early phase of CHI is neuroprotective. Our work further indicates that dynorphin is actively involved in the cellular and molecular mechanisms of edema formation and BBB breakdown in CHI.
  •  
11.
  • Sharma, Hari S., et al. (författare)
  • Nano-Drug Delivery and Neuroprotection in Spinal Cord Injury
  • 2009
  • Ingår i: Journal of Nanoscience and Nanotechnology. - 1533-4880 .- 1533-4899. ; 9:8, s. 5014-5037
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently nano-drug delivery to the central nervous system (CNS) has been shown to be more effective than the parent compound by itself. An increased availability of the drug for longer periods to the brain or spinal cord and/or a decrease in the drug metabolism altogether could lead to potentiation of the pharmacological activity of the nano-delivered compounds. However, it is still unclear whether the nanocarriers used to deliver the drugs may itself has any potential neurotoxic activity. Although, nanodrug-delivery appears to be a quite promising therapeutic tool for the future clinical therapy, its advantages and limitations for the routine use of patients still needs to be elucidated. Our laboratory is engaged to study a plethora of potential neuroprotective novel compounds delivered to the CNS using nanowiring techniques following brain or spinal cord trauma. Our investigations show that nanowired drugs, if delivered locally following spinal cord injury achieve better neuroprotection than the parent compounds. This effect of nano-drug delivery appears to be very selective in nature. Thus, a clear differentiation based on the compounds used for nano-drug delivery can be seen on various pathological parameters in spinal cord injury. These observations suggest that nanowiring may itself do not induce neuroprotection, but enhance the neuroprotective ability of compounds after trauma. This review describes some recent advances in nano-drug delivery to the CNS in relation to novel neuroprotective strategies with special emphasis on spinal cord trauma based on our own observations and recent findings from our laboratory investigations.
  •  
12.
  •  
13.
  • Sharma, Hari Shanker, et al. (författare)
  • Drug delivery to the spinal cord tagged with nanowire enhances neuroprotective efficacy and functional recovery following trauma to the rat spinal cord
  • 2007
  • Ingår i: Neuroprotective agents. - : Wiley. - 9781573316859 ; , s. 197-218
  • Konferensbidrag (refereegranskat)abstract
    • The possibility that drugs attached to innocuous nanowires enhance their delivery within the central nervous system (CNS) and thereby increase their therapeutic efficacy was examined in a rat model of spinal cord injury (SCI). Three compounds-AP173 (SCI-1), AP713 (SCI-2), and AP364 (SCI-5) (Acure Pharma, Uppsala, Sweden)-were tagged with TiO2-based nanowires using standard procedure. Normal compounds were used for comparison. SCI was produced by making a longitudinal incision into the right dorsal horn of the T10-T11 segments under Equithesin anesthesia. The compounds, either alone or tagged with nanowires, were applied topically within 5 to 10 min after SCI. In these rats, behavioral outcome, blood-spinal cord barrier (BSCB) permeability, edema formation, and cell injury were examined at 5 h after injury. Topical application of normal compounds in high quantity (10 mu g in 20 mu L) attenuated behavioral dysfunction (3 h after trauma), edema formation, and cell injury, as well as reducing BSCB permeability to Evans blue albumin and I-131. These beneficial effects are most pronounced with AP713 (SCI-2) treatment. Interestingly, when these compounds were administered in identical conditions after tagging with nanowires, their beneficial effects on functional recovery and spinal cord pathology were further enhanced. However, topical administration of nanowires alone did not influence trauma-induced spinal cord pathology or motor functions. Taken together, our results, probably for the first time, indicate that drug delivery and therapeutic efficacy are enhanced when the compounds are administered with nanowires.
  •  
14.
  • Sharma, Hari Shanker, et al. (författare)
  • Nanowired-Drug Delivery Enhances Neuroprotective Efficacy of Compounds and Reduces Spinal Cord Edema Formation and Improves Functional Outcome Following Spinal Cord Injury in the Rat
  • 2010
  • Ingår i: Brain Edema XIV. - Vienna : Springer. - 9783211987582 - 9783211988114 ; , s. 343-350
  • Konferensbidrag (refereegranskat)abstract
    • The possibility that drugs attached to nanowires enhance their therapeutic efficacy was examined in a rat model of spinal cord injury (SCI). Three Acure compounds AP-173, AP-713 and AP-364 were tagged with TiO2-based nanowires (50-60 nm) and applied over the traumatized cord either 5 or 60 min after SCI in rats produced by a longitudinal incision into the right dorsal horn of the T10-11 segments under equithesin anaesthesia. Normal compounds were used for comparison. After 5 h SCI, behavioral outcome, blood-spinal cord barrier (BSCB) permeability, edema formation and cell injury were examined. Topical application of nanowired compound AP-713 (10 mu g in 20 mu L) when applied either 5 or 60 min after injury markedly attenuated behavioral dysfunction at 2-3 h after SCI and reduces BSCB disruption, edema formation and cord pathology at 5 h compared to other compounds. Whereas normal compounds applied at 5 min after injury (but not after 60 min) had some significant but less beneficial effects compared to their nanowired combinations. On the other hand, nanowires alone did not influence spinal cord pathology or motor function after SCI. Taken together, our results indicate that the nanowired-drug-delivery enhances the neuroprotective efficacy of drugs in SCI and reduces functional outcome compared to normal compounds even applied at a later stage following trauma, not reported earlier.
  •  
15.
  • Zhou, Zheng, et al. (författare)
  • Reduced intensity conditioning for acute myeloid leukemia using melphalan- vs busulfan-based regimens : a CIBMTR report
  • 2020
  • Ingår i: Blood Advances. - : American Society of Hematology. - 2473-9529 .- 2473-9537. ; 4:13, s. 3180-3190
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a lack of large comparative study on the outcomes of reduced intensity conditioning (RIC) in acute myeloid leukemia (AML) transplantation using fludarabine/busulfan (FB) and fludarabine/melphalan (FM) regimens. Adult AML patients from Center for International Blood and Marrow Transplant Research who received first RIC allo-transplant between 2001 and 2015 were studied. Patients were excluded if they received cord blood or identical twin transplant, total body irradiation in conditioning, or graft-versus-host disease (GVHD) prophylaxis with in vitro T-cell depletion. Primary outcome was overall survival (OS), secondary end points were leukemia-free survival (LFS), nonrelapse mortality (NRM), relapse, and GVHD. Multivariate survival model was used with adjustment for patient, leukemia, and transplant-related factors. A total of 622 patients received FM and 791 received FB RIC. Compared with FB, the FM group had fewer transplant in complete remission (CR), fewer matched sibling donors, and less usage of anti-thymocyte globulin or alemtuzumab. More patients in the FM group received marrow grafts and had transplantation before 2005. OS was significantly lower within the first 3 months posttransplant in the FM group (hazard ratio [HR] = 1.82, P < .001), but was marginally superior beyond 3 months (HR = 0.87, P = .05). LFS was better with FM compared with FB (HR = 0.89, P = .05). NRM was significantly increased in the FM group during the first 3 months of posttransplant (HR = 3.85, P < .001). Long-term relapse was lower with FM (HR = 0.65, P < .001). Analysis restricted to patients with CR showed comparable results. In conclusion, compared with FB, the FM RIC showed a marginally superior long-term OS and LFS and a lower relapse rate. A lower OS early posttransplant within 3 months was largely the result of a higher early NRM.
  •  
16.
  • Elfawy, Hasnaa A., et al. (författare)
  • Molecular toxicity of Benzo(a)pyrene mediated by elicited oxidative stress infer skeletal deformities and apoptosis in embryonic zebrafish
  • 2021
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 789
  • Tidskriftsartikel (refereegranskat)abstract
    • Benzo(a)pyrene (BaP) has become an integral component of disposed of plastic waste, organic pollutants, and remnants of combustible materials in the aquatic environment due to their persistent nature. The accumulation and integration of these polycyclic aromatic hydrocarbons (PAHs) have raised concern to human health and ecological safety. This study assessed the BaP-induced in vivo molecular toxicity with embryonic zebrafish inferred by oxidative stress and apoptosis. BaP was found to induce morphological and physiological abnormalities like delayed hatching (p < 0.05). Computational analysis demonstrated the high-affinity interaction of BaP with the zebrafish hatching enzyme (ZHE1) with Arg, Cys, Ala, Tyr, and Phe located at the active site revealing the influence of BaP on delayed hatching due to alteration of the enzyme structure. RT-PCR analysis revealed significant down-regulation of the skeletal genes Sox9a, SPP1/OPN, and Col1a1 (p < 0.05) genes. The cellular investigations unraveled that the toxicity of BaP extends to the skeletal regions of zebrafish (head, backbone, and tail) because of the elicited oxidative stress leading to apoptosis. The study extended the horizon of understanding of BaP toxicity at the molecular level which will enhance the indulgent and designing of techniques for better ecological sustainability.
  •  
17.
  • Maity, J. P., et al. (författare)
  • Advanced application of nano-technological and biological processes as well as mitigation options for arsenic removal
  • 2021
  • Ingår i: Journal of Hazardous Materials. - : Elsevier BV. - 0304-3894 .- 1873-3336. ; 405
  • Tidskriftsartikel (refereegranskat)abstract
    • Arsenic (As) removal is a huge challenge, since several million people are potentially exposed (>10 μg/L World Health Organization guideline limit) through As contaminated drinking water worldwide. Review attempts to address the present situation of As removal, considering key topics on nano-technological and biological process and current progress and future perspectives of possible mitigation options have been evaluated. Different physical, chemical and biological methods are available to remove As from contaminated water/soil/wastes, where removal efficiency mainly depends on absorbent type, initial adsorbate concentration, speciation and interfering species. Oxidation is an important pretreatment step in As removal, which is generally achieved by several media such as O2/O3, HClO, KMnO4 and H2O2. The Fe-based-nanomaterials (α/β/γ-FeOOH, Fe2O3/Fe3O4–γ-Fe2O3), Fe-based-composite-compounds, activated-Al2O3, HFO, Fe-Al2O3, Fe2O3-impregnated-graphene-aerogel, iron-doped-TiO2, aerogel-based- CeTiO2, and iron-oxide-coated-manganese are effective to remove As from contaminated water. Biological processes (phytoremediation/microbiological) are effective and ecofriendly for As removal from water and/or soil environment. Microorganisms remove As from water, sediments and soil by metabolism, detoxification, oxidation-reduction, bio-adsorption, bio-precipitation, and volatilization processes. Ecofriendly As mitigation options can be achieved by utilizing an alternative As-safe-aquifer, surface-water or rainwater-harvesting. Application of hybrid (biological with chemical and physical process) and Best-Available-Technologies (BAT) can be the most effective As removal strategy to remediate As contaminated environments.
  •  
18.
  •  
19.
  • Muresanu, Dafin F., et al. (författare)
  • Nanowired Delivery of Growth Hormone Attenuates Pathophysiology of Spinal Cord Injury and Enhances Insulin-Like Growth Factor-1 Concentration in the Plasma and the Spinal Cord
  • 2015
  • Ingår i: Molecular Neurobiology. - : Springer Science and Business Media LLC. - 0893-7648 .- 1559-1182. ; 52:2, s. 837-845
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous studies from our laboratory showed that topical application of growth hormone (GH) induced neuroprotection 5 h after spinal cord injury (SCI) in a rat model. Since nanodelivery of drugs exerts superior neuroprotective effects, a possibility exists that nanodelivery of GH will induce long-term neuroprotection after a focal SCI. SCI induces GH deficiency that is coupled with insulin-like growth factor-1 (IGF-1) reduction in the plasma. Thus, an exogenous supplement of GH in SCI may enhance the IGF-1 levels in the cord and induce neuroprotection. In the present investigation, we delivered TiO2-nanowired growth hormone (NWGH) after a longitudinal incision of the right dorsal horn at the T10-11 segments in anesthetized rats and compared the results with normal GH therapy on IGF-1 and GH contents in the plasma and in the cord in relation to blood-spinal cord barrier (BSCB) disruption, edema formation, and neuronal injuries. Our results showed a progressive decline in IGF-1 and GH contents in the plasma and the T9 and T12 segments of the cord 12 and 24 h after SCI. Marked increase in the BSCB breakdown, as revealed by extravasation of Evans blue and radioiodine, was seen at these time points after SCI in association with edema and neuronal injuries. Administration of NWGH markedly enhanced the IGF-1 levels and GH contents in plasma and cord after SCI, whereas normal GH was unable to enhance IGF-1 or GH levels 12 or 24 h after SCI. Interestingly, NWGH was also able to reduce BSCB disruption, edema formation, and neuronal injuries after trauma. On the other hand, normal GH was ineffective on these parameters at all time points examined. Taken together, our results are the first to demonstrate that NWGH is quite effective in enhancing IGF-1 and GH levels in the cord and plasma that may be crucial in reducing pathophysiology of SCI.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  • Patnaik, Ranjana, et al. (författare)
  • Histamine H3 Inverse Agonist BF 2649 or Antagonist with Partial H4 Agonist Activity Clobenpropit Reduces Amyloid Beta Peptide-Induced Brain Pathology in Alzheimer's Disease
  • 2018
  • Ingår i: Molecular Neurobiology. - : Humana Press. - 0893-7648 .- 1559-1182. ; 55:1, s. 312-321
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is one of the leading causes for disability and death affecting millions of people worldwide. Thus, novel therapeutic strategies are needed to reduce brain pathology associated with AD. In view of increasing awareness regarding involvement of histaminergic pathways in AD, we explored the role of one H3 receptor inverse agonist BF 2649 and one selective H3 receptor antagonist with partial H4 agonist activity in amyloid beta peptide (A beta P) infusion-induced brain pathology in a rat model. AD-like pathology was produced by administering A beta P (1-40) intracerebroventricular (i.c.v.) in the left lateral ventricle (250 ng/10 mu l, once daily) for 4 weeks. Control rats received saline. In separate group of rats, either BF 2649 (1 mg/kg, i.p.) or clobenpropit (1 mg/kg, i.p.) was administered once daily for 1 week after 3weeks of A beta P administration. After 30 days, blood-brain barrier (BBB) breakdown, edema formation, neuronal, glial injuries, and A beta P deposits were examined in the brain. A significant reduction in A beta P deposits along with marked reduction in neuronal or glial reactions was seen in the drug-treated group. The BBB breakdown to Evans blue albumin and radioiodine in the cortex, hippocampus, hypothalamus, and cerebellum was also significantly reduced in these drug-treated groups. Clobenpropit showed superior effects than the BF2649 in reducing brain pathology in AD. Taken together, our observations are the first to show that blockade of H3 and stimulation of H4 receptors are beneficial for the treatment of AD pathology, not reported earlier.
  •  
24.
  •  
25.
  • Sharma, Aruna, et al. (författare)
  • Cold Environment Exacerbates Brain Pathology and Oxidative Stress Following Traumatic Brain Injuries : Potential Therapeutic Effects of Nanowired Antioxidant Compound H-290/51
  • 2018
  • Ingår i: Molecular Neurobiology. - : Humana Press. - 0893-7648 .- 1559-1182. ; 55:1, s. 276-285
  • Tidskriftsartikel (refereegranskat)abstract
    • The possibility that traumatic brain injury (TBI) occurring in a cold environment exacerbates brain pathology and oxidative stress was examined in our rat model. TBI was inflicted by making a longitudinal incision into the right parietal cerebral cortex (2 mm deep and 4 mm long) in cold-acclimatized rats (5 degrees C for 3 h daily for 5 weeks) or animals at room temperature under Equithesin anesthesia. TBI in cold-exposed rats exhibited pronounced increase in brain lucigenin (LCG), luminol (LUM), and malondialdehyde (MDA) and marked pronounced decrease in glutathione (GTH) as compared to identical TBI at room temperature. The magnitude and intensity of BBB breakdown to radioiodine and Evans blue albumin, edema formation, and neuronal injuries were also exacerbated in cold-exposed rats after injury as compared to room temperature. Nanowired delivery of H-290/51 (50 mg/kg) 6 and 8 h after injury in cold-exposed group significantly thwarted brain pathology and oxidative stress whereas normal delivery of H-290/51 was neuroprotective after TBI at room temperature only. These observations are the first to demonstrate that (i) cold aggravates the pathophysiology of TBI possibly due to an enhanced production of oxidative stress, (ii) and in such conditions, nanodelivery of antioxidant compound has superior neuroprotective effects, not reported earlier.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 31

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy