SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Peichl Matthias) "

Sökning: WFRF:(Peichl Matthias)

  • Resultat 1-25 av 115
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Artaxo, Paulo, et al. (författare)
  • Tropical and Boreal Forest – Atmosphere Interactions : A Review
  • 2022
  • Ingår i: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 74:1, s. 24-163
  • Forskningsöversikt (refereegranskat)abstract
    • This review presents how the boreal and the tropical forests affect the atmosphere, its chemical composition, its function, and further how that affects the climate and, in return, the ecosystems through feedback processes. Observations from key tower sites standing out due to their long-term comprehensive observations: The Amazon Tall Tower Observatory in Central Amazonia, the Zotino Tall Tower Observatory in Siberia, and the Station to Measure Ecosystem-Atmosphere Relations at Hyytiäla in Finland. The review is complemented by short-term observations from networks and large experiments.The review discusses atmospheric chemistry observations, aerosol formation and processing, physiochemical aerosol, and cloud condensation nuclei properties and finds surprising similarities and important differences in the two ecosystems. The aerosol concentrations and chemistry are similar, particularly concerning the main chemical components, both dominated by an organic fraction, while the boreal ecosystem has generally higher concentrations of inorganics, due to higher influence of long-range transported air pollution. The emissions of biogenic volatile organic compounds are dominated by isoprene and monoterpene in the tropical and boreal regions, respectively, being the main precursors of the organic aerosol fraction.Observations and modeling studies show that climate change and deforestation affect the ecosystems such that the carbon and hydrological cycles in Amazonia are changing to carbon neutrality and affect precipitation downwind. In Africa, the tropical forests are so far maintaining their carbon sink.It is urgent to better understand the interaction between these major ecosystems, the atmosphere, and climate, which calls for more observation sites, providing long-term data on water, carbon, and other biogeochemical cycles. This is essential in finding a sustainable balance between forest preservation and reforestation versus a potential increase in food production and biofuels, which are critical in maintaining ecosystem services and global climate stability. Reducing global warming and deforestation is vital for tropical forests.
  •  
2.
  • Fu, Zheng, et al. (författare)
  • Uncovering the critical soil moisture thresholds of plant water stress for European ecosystems
  • 2022
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 28:6, s. 2111-2123
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the critical soil moisture (SM) threshold (θcrit) of plant water stress and land surface energy partitioning is a basis to evaluate drought impacts and improve models for predicting future ecosystem condition and climate. Quantifying the θcrit across biomes and climates is challenging because observations of surface energy fluxes and SM remain sparse. Here, we used the latest database of eddy covariance measurements to estimate θcrit across Europe by evaluating evaporative fraction (EF)-SM relationships and investigating the covariance between vapor pressure deficit (VPD) and gross primary production (GPP) during SM dry-down periods. We found that the θcrit and soil matric potential threshold in Europe are 16.5% and −0.7 MPa, respectively. Surface energy partitioning characteristics varied among different vegetation types; EF in savannas had the highest sensitivities to SM in water-limited stage, and the lowest in forests. The sign of the covariance between daily VPD and GPP consistently changed from positive to negative during dry-down across all sites when EF shifted from relatively high to low values. This sign of the covariance changed after longer period of SM decline in forests than in grasslands and savannas. Estimated θcrit from the VPD–GPP covariance method match well with the EF–SM method, showing this covariance method can be used to detect the θcrit. We further found that soil texture dominates the spatial variability of θcrit while shortwave radiation and VPD are the major drivers in determining the spatial pattern of EF sensitivities. Our results highlight for the first time that the sign change of the covariance between daily VPD and GPP can be used as an indicator of how ecosystems transition from energy to SM limitation. We also characterized the corresponding θcrit and its drivers across diverse ecosystems in Europe, an essential variable to improve the representation of water stress in land surface models.
  •  
3.
  • George, Jan Peter, et al. (författare)
  • Method comparison of indirect assessments of understory leaf area index (LAIu) : A case study across the extended network of ICOS forest ecosystem sites in Europe
  • 2021
  • Ingår i: Ecological Indicators. - : Elsevier BV. - 1470-160X .- 1872-7034. ; 128
  • Tidskriftsartikel (refereegranskat)abstract
    • Leaf area index (LAI) is a key ecological indicator for describing the structure of canopies and for modelling energy exchange between atmosphere and biosphere. While LAI of the forest overstory can be accurately assessed over large spatial scales via remote sensing, LAI of the forest understory (LAIu) is still largely ignored in ecological studies and ecosystem modelling due to the fact that it is often too complex to be destructively sampled or approximated by other site parameters. Additionally, so far only few attempts have been made to retrieve understory LAI via remote sensing, because dense canopies with high LAI are often hindering retrieval algorithms to produce meaningful estimates for understory LAI. Consequently, the forest understory still constitutes a poorly investigated research realm impeding ecological studies to properly account for its contribution to the energy absorption capacity of forest stands. This study aims to compare three conceptually different indirect retrieval methodologies for LAIu over a diverse panel of forest understory types distributed across Europe. For this we carried out near-to-surface measurements of understory reflectance spectra as well as digital surface photography over the extended network of Integrated Carbon Observation System (ICOS) forest ecosystem sites. LAIu was assessed by exploiting the empirical relationship between vegetation cover and light absorption (Beer-Lambert- Bouguer law) as well as by utilizing proposed relationships with two prominent vegetation indices: normalized difference vegetation index (NDVI) and simple ratio (SR). Retrievals from the three methods were significantly correlated with each other (r = 0.63–0.99, RMSE = 0.53–0.72), but exhibited also significant bias depending on the LAI scale. The NDVI based retrieval approach most likely overestimates LAI at productive sites when LAIu > 2, while the simple ratio algorithm overestimates LAIu at sites with sparse understory vegetation and presence of litter or bare soil. The purely empirical method based on the Beer-Lambert law of light absorption seems to offer a good compromise, since it provides reasonable LAIu values at both low and higher LAI ranges. Surprisingly, LAIu variation among sites seems to be largely decoupled from differences in climate and light permeability of the overstory, but significantly increased with vegetation diversity (expressed as species richness) and hence proposes new applications of LAIu in ecological modelling.
  •  
4.
  • Pisek, Jan, et al. (författare)
  • Retrieval and validation of forest background reflectivity from daily Moderate Resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF) data across European forests
  • 2021
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 18:2, s. 621-635
  • Tidskriftsartikel (refereegranskat)abstract
    • Information about forest background reflectance is needed for accurate biophysical parameter retrieval from forest canopies (overstory) with remote sensing. Separating under- and overstory signals would enable more accurate modeling of forest carbon and energy fluxes. We retrieved values of the normalized difference vegetation index (NDVI) of the forest understory with the multi-angular Moderate Resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF)/albedo data (gridded 500 m daily Collection 6 product), using a method originally developed for boreal forests. The forest floor background reflectance estimates from the MODIS data were compared with in situ understory reflectance measurements carried out at an extensive set of forest ecosystem experimental sites across Europe. The reflectance estimates from MODIS data were, hence, tested across diverse forest conditions and phenological phases during the growing season to examine their applicability for ecosystems other than boreal forests. Here we report that the method can deliver good retrievals, especially over different forest types with open canopies (low foliage cover). The performance of the method was found to be limited over forests with closed canopies (high foliage cover), where the signal from understory becomes too attenuated. The spatial heterogeneity of individual field sites and the limitations and documented quality of the MODIS BRDF product are shown to be important for the correct assessment and validation of the retrievals obtained with remote sensing.
  •  
5.
  • Rebmann, Corinna, et al. (författare)
  • ICOS eddy covariance flux-station site setup : A review
  • 2018
  • Ingår i: International Agrophysics. - : Walter de Gruyter GmbH. - 0236-8722 .- 2300-8725. ; 32:4, s. 471-494
  • Forskningsöversikt (refereegranskat)abstract
    • The Integrated Carbon Observation System Research Infrastructure aims to provide long-Term, continuous observations of sources and sinks of greenhouse gases such as carbon dioxide, methane, nitrous oxide, and water vapour. At ICOS ecosystem stations, the principal technique for measurements of ecosystem-Atmosphere exchange of GHGs is the eddy-covariance technique. The establishment and setup of an eddy-covariance tower have to be carefully reasoned to ensure high quality flux measurements being representative of the investigated ecosystem and comparable to measurements at other stations. To fulfill the requirements needed for flux determination with the eddy-covariance technique, variations in GHG concentrations have to be measured at high frequency, simultaneously with the wind velocity, in order to fully capture turbulent fluctuations. This requires the use of high-frequency gas analysers and ultrasonic anemometers. In addition, to analyse flux data with respect to environmental conditions but also to enable corrections in the post-processing procedures, it is necessary to measure additional abiotic variables in close vicinity to the flux measurements. Here we describe the standards the ICOS ecosystem station network has adopted for GHG flux measurements with respect to the setup of instrumentation on towers to maximize measurement precision and accuracy while allowing for flexibility in order to observe specific ecosystem features.
  •  
6.
  • Tang, Angela Che Ing, et al. (författare)
  • Detection and attribution of an anomaly in terrestrial photosynthesis in Europe during the COVID-19 lockdown
  • 2023
  • Ingår i: Science of the Total Environment. - 0048-9697 .- 1879-1026. ; 903
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon dioxide (CO2) uptake by plant photosynthesis, referred to as gross primary production (GPP) at the ecosystem level, is sensitive to environmental factors, including pollutant exposure, pollutant uptake, and changes in the scattering of solar shortwave irradiance (SWin) − the energy source for photosynthesis. The 2020 spring lockdown due to COVID-19 resulted in improved air quality and atmospheric transparency, providing a unique opportunity to assess the impact of air pollutants on terrestrial ecosystem functioning. However, detecting these effects can be challenging as GPP is influenced by other meteorological drivers and management practices. Based on data collected from 44 European ecosystem-scale CO2 flux monitoring stations, we observed significant changes in spring GPP at 34 sites during 2020 compared to 2015–2019. Among these, 14 sites showed an increase in GPP associated with higher SWin, 10 sites had lower GPP linked to atmospheric and soil dryness, and seven sites were subjected to management practices. The remaining three sites exhibited varying dynamics, with one experiencing colder and rainier weather resulting in lower GPP, and two showing higher GPP associated with earlier spring melts. Analysis using the regional atmospheric chemical transport model (LOTOS-EUROS) indicated that the ozone (O3) concentration remained relatively unchanged at the research sites, making it unlikely that O3 exposure was the dominant factor driving the primary production anomaly. In contrast, SWin increased by 9.4 % at 36 sites, suggesting enhanced GPP possibly due to reduced aerosol optical depth and cloudiness. Our findings indicate that air pollution and cloudiness may weaken the terrestrial carbon sink by up to 16 %. Accurate and continuous ground-based observations are crucial for detecting and attributing subtle changes in terrestrial ecosystem functioning in response to environmental and anthropogenic drivers.
  •  
7.
  • Abdalla, M., et al. (författare)
  • Simulation of CO2 and Attribution Analysis at Six European Peatland Sites Using the ECOSSE Model
  • 2014
  • Ingår i: Water, Air and Soil Pollution. - : Springer Science and Business Media LLC. - 1573-2932 .- 0049-6979. ; 225:11, s. 2182-2182
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we simulated heterotrophic CO2 (Rh) fluxes at six European peatland sites using the ECOSSE model and compared them to estimates of Rh made from eddy covariance (EC) measurements. The sites are spread over four countries with different climates, vegetation and management. Annual Rh from the different sites ranged from 110 to 540 g C m(-2). The maximum annual Rh occurred when the water table (WT) level was between -10 and -25 cm and the air temperature was above 6.2 degrees C. The model successfully simulated seasonal trends for the majority of the sites. Regression relationships (r(2)) between the EC-derived and simulated Rh ranged from 0.28 to 0.76, and the root mean square error and relative error were small, revealing an acceptable fit. The overall relative deviation value between annual EC-derived and simulated Rh was small (-1 %) and model efficiency ranges across sites from -0.25 to +0.41. Sensitivity analysis highlighted that increasing temperature, decreasing precipitation and lowering WT depth could significantly increase Rh from soils. Thus, management which lowers the WT could significantly increase anthropogenic CO2, so from a carbon emissions perspective, it should be avoided. The results presented here demonstrate a robust basis for further application of the ECOSSE model to assess the impacts of future land management interventions on peatland carbon emissions and to help guide best practice land management decisions.
  •  
8.
  • Alekseychik, Pavel, et al. (författare)
  • Surface energy exchange in pristine and managed boreal peatlands
  • 2018
  • Ingår i: Mires and Peat. - 1819-754X. ; 21
  • Tidskriftsartikel (refereegranskat)abstract
    • Surface–atmosphere energy exchange is strongly ecosystem-specific. At the same time, as the energy balance constitutes responses of an ecosystem to environmental stressors including precipitation, humidity and solar radiation, it results in feedbacks of potential importance for the regional climate. Northern peatlands represent a diverse class of ecosystems that cover nearly 6 × 106 km2 in the Boreal region, which makes the inter-comparison of their energy balances an important objective. With this in mind we studied energy exchange across a broad spectrum of peatlands from pristine fens and bogs to forested and agriculturally managed peatlands, which represent a large fraction of the landscape in Finland and Sweden. The effects of management activities on the energy balance were extensively examined from the micrometeorological point of view, using eddy covariance data from eight sites in these two countries (56º 12'–62º 11' N, 13º 03'–30º 05' E). It appears that the surface energy balance varies widely amongst the different peatland types. Generally, energy exchange features including the Bowen ratio, surface conductance, coupling to the atmosphere, responses to water table fluctuations and vapour pressure deficit could be associated directly with the peatland type. The relative constancy of the Bowen ratio in natural open mires contrasted with its variation in tree-covered and agricultural peatlands. We conclude that the impacts of management and the consequences of land-use change in peatlands for the local and regional climate might be substantial.
  •  
9.
  • Bieroza, Magdalena, et al. (författare)
  • The Cold Region Critical Zone in Transition: Responses to Climate Warming and Land Use Change
  • 2021
  • Ingår i: Annual Review of Environment and Resources. - : Annual Reviews. - 1543-5938 .- 1545-2050. ; 46, s. 111-134
  • Forskningsöversikt (refereegranskat)abstract
    • Global climate warming disproportionately affects high-latitude and mountainous terrestrial ecosystems. Warming is accompanied by permafrost thaw, shorter winters, earlier snowmelt, more intense soil freeze-thaw cycles, drier summers, and longer fire seasons. These environmental changes in turn impact surface water and groundwater flow regimes, water quality, greenhouse gas emissions, soil stability, vegetation cover, and soil (micro)biological communities. Warming also facilitates agricultural expansion, urban growth, and natural resource development, adding growing anthropogenic pressures to cold regions' landscapes, soil health, and biodiversity. Further advances in the predictive understanding of how cold regions' critical zone processes, functions, and ecosystem services will continue to respond to climate warming and land use changes require multiscale monitoring technologies coupled with integrated observational and modeling tools. We highlight some of the major challenges, knowledge gaps, and opportunities in cold region critical zone research, with an emphasis on subsurface processes and responses in both natural and agricultural ecosystems.
  •  
10.
  • Cai, Zhanzhang, et al. (författare)
  • Modelling Daily Gross Primary Productivity with Sentinel-2 Data in the Nordic Region-Comparison with Data from MODIS
  • 2021
  • Ingår i: Remote Sensing. - : MDPI. - 2072-4292. ; 13:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The high-resolution Sentinel-2 data potentially enable the estimation of gross primary productivity (GPP) at finer spatial resolution by better capturing the spatial variation in a heterogeneous landscapes. This study investigates the potential of 10 m resolution reflectance from the Sentinel-2 Multispectral Instrument to improve the accuracy of GPP estimation across Nordic vegetation types, compared with the 250 m and 500 m resolution reflectance from the Moderate Resolution Imaging Spectroradiometer (MODIS). We applied linear regression models with inputs of two-band enhanced vegetation index (EVI2) derived from Sentinel-2 and MODIS reflectance, respectively, together with various environmental drivers to estimate daily GPP at eight Nordic eddy covariance (EC) flux tower sites. Compared with the GPP from EC measurements, the accuracies of modelled GPP were generally high (R-2 = 0.84 for Sentinel-2; R-2 = 0.83 for MODIS), and the differences between Sentinel-2 and MODIS were minimal. This demonstrates the general consistency in GPP estimates based on the two satellite sensor systems at the Nordic regional scale. On the other hand, the model accuracy did not improve by using the higher spatial-resolution Sentinel-2 data. More analyses of different model formulations, more tests of remotely sensed indices and biophysical parameters, and analyses across a wider range of geographical locations and times will be required to achieve improved GPP estimations from Sentinel-2 satellite data.
  •  
11.
  • Campbell, David, et al. (författare)
  • Gap-filling eddy covariance methane fluxes: Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands
  • 2021
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923 .- 1873-2240. ; 308
  • Tidskriftsartikel (refereegranskat)abstract
    • Time series of wetland methane fluxes measured by eddy covariance require gap-filling to estimate daily, seasonal, and annual emissions. Gap-filling methane fluxes is challenging because of high variability and complex responses to multiple drivers. To date, there is no widely established gap-filling standard for wetland methane fluxes, with regards both to the best model algorithms and predictors. This study synthesizes results of different gap-filling methods systematically applied at 17 wetland sites spanning boreal to tropical regions and including all major wetland classes and two rice paddies. Procedures are proposed for: 1) creating realistic artificial gap scenarios, 2) training and evaluating gap-filling models without overstating performance, and 3) predicting halfhourly methane fluxes and annual emissions with realistic uncertainty estimates. Performance is compared between a conventional method (marginal distribution sampling) and four machine learning algorithms. The conventional method achieved similar median performance as the machine learning models but was worse than the best machine learning models and relatively insensitive to predictor choices. Of the machine learning models, decision tree algorithms performed the best in cross-validation experiments, even with a baseline predictor set, and artificial neural networks showed comparable performance when using all predictors. Soil temperature was frequently the most important predictor whilst water table depth was important at sites with substantial water table fluctuations, highlighting the value of data on wetland soil conditions. Raw gap-filling uncertainties from the machine learning models were underestimated and we propose a method to calibrate uncertainties to observations. The python code for model development, evaluation, and uncertainty estimation is publicly available. This study outlines a modular and robust machine learning workflow and makes recommendations for, and evaluates an improved baseline of, methane gap-filling models that can be implemented in multi-site syntheses or standardized products from regional and global flux networks (e.g., FLUXNET).
  •  
12.
  • Campbell, David, et al. (författare)
  • Identifying dominant environmental predictors of freshwater wetland methane fluxes across diurnal to seasonal time scales
  • 2021
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 27, s. 3582-3604
  • Tidskriftsartikel (refereegranskat)abstract
    • While wetlands are the largest natural source of methane (CH4) to the atmosphere, they represent a large source of uncertainty in the global CH4 budget due to the complex biogeochemical controls on CH4 dynamics. Here we present, to our knowledge, the first multi-site synthesis of how predictors of CH4 fluxes (FCH4) in freshwater wetlands vary across wetland types at diel, multiday (synoptic), and seasonal time scales. We used several statistical approaches (correlation analysis, generalized additive modeling, mutual information, and random forests) in a wavelet-based multi-resolution framework to assess the importance of environmental predictors, nonlinearities and lags on FCH4 across 23 eddy covariance sites. Seasonally, soil and air temperature were dominant predictors of FCH4 at sites with smaller seasonal variation in water table depth (WTD). In contrast, WTD was the dominant predictor for wetlands with smaller variations in temperature (e.g., seasonal tropical/subtropical wetlands). Changes in seasonal FCH4 lagged fluctuations in WTD by similar to 17 +/- 11 days, and lagged air and soil temperature by median values of 8 +/- 16 and 5 +/- 15 days, respectively. Temperature and WTD were also dominant predictors at the multiday scale. Atmospheric pressure (PA) was another important multiday scale predictor for peat-dominated sites, with drops in PA coinciding with synchronous releases of CH4. At the diel scale, synchronous relationships with latent heat flux and vapor pressure deficit suggest that physical processes controlling evaporation and boundary layer mixing exert similar controls on CH4 volatilization, and suggest the influence of pressurized ventilation in aerenchymatous vegetation. In addition, 1- to 4-h lagged relationships with ecosystem photosynthesis indicate recent carbon substrates, such as root exudates, may also control FCH4. By addressing issues of scale, asynchrony, and nonlinearity, this work improves understanding of the predictors and timing of wetland FCH4 that can inform future studies and models, and help constrain wetland CH4 emissions.
  •  
13.
  • Chang, Kuang Yu, et al. (författare)
  • Substantial hysteresis in emergent temperature sensitivity of global wetland CH4 emissions
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1, s. 2266-2266
  • Tidskriftsartikel (refereegranskat)abstract
    • Wetland methane (CH4) emissions ([Formula: see text]) are important in global carbon budgets and climate change assessments. Currently, [Formula: see text] projections rely on prescribed static temperature sensitivity that varies among biogeochemical models. Meta-analyses have proposed a consistent [Formula: see text] temperature dependence across spatial scales for use in models; however, site-level studies demonstrate that [Formula: see text] are often controlled by factors beyond temperature. Here, we evaluate the relationship between [Formula: see text] and temperature using observations from the FLUXNET-CH4 database. Measurements collected across the globe show substantial seasonal hysteresis between [Formula: see text] and temperature, suggesting larger [Formula: see text] sensitivity to temperature later in the frost-free season (about 77% of site-years). Results derived from a machine-learning model and several regression models highlight the importance of representing the large spatial and temporal variability within site-years and ecosystem types. Mechanistic advancements in biogeochemical model parameterization and detailed measurements in factors modulating CH4 production are thus needed to improve global CH4 budget assessments.
  •  
14.
  • Chi, Jinshu, et al. (författare)
  • Forest floor fluxes drive differences in the carbon balance of contrasting boreal forest stands
  • 2021
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923 .- 1873-2240. ; 306
  • Tidskriftsartikel (refereegranskat)abstract
    • The forest floor provides an important interface of soil-atmosphere CO2 exchanges but their controls and contributions to the ecosystem-scale carbon budget are uncertain due to measurement limitations. In this study, we deployed eddy covariance systems below- and above-canopy to measure the spatially integrated net forest floor CO2 exchange (NFFE) and the entire net ecosystem CO2 exchange (NEE) at two mature contrasting stands located in close vicinity in boreal Sweden. We first developed an improved cospectra model to correct below-canopy flux data. Our empirical below-canopy cospectra models revealed a greater contribution of large- and small-scale eddies in the trunk space compared to their distribution in the above-canopy turbulence cospectra. We found that applying the above-canopy cospectra model did not affect the below-canopy annual CO2 fluxes at the sparse pine forest but significantly underestimated fluxes at the dense mixed spruce-pine stand. At the mixed spruce-pine stand, forest floor respiration (Rff) was higher and photosynthesis (GPPff) was lower, leading to a 1.4 times stronger net CO2 source compared to the pine stand. We further found that drought enhanced Rff more than GPPff, leading to increased NFFE. Averaged across the six site-years, forest floor fluxes contributed 82% to ecosystem-scale respiration (Reco) and 12% to gross primary production (GPP). Since the annual GPP was similar between both stands, the considerable difference in their annual NEE was due to contrasting Reco, the latter being primarily driven by the variations in NFFE. This implies that NFFE acted as the driver for the differences in NEE between these two contrasting stands. This study therefore highlights the important role of forest floor CO2 fluxes in regulating the boreal forest carbon balance. It further calls for extended efforts in acquiring high spatiotemporal resolution data of forest floor fluxes to improve predictions of global change impacts on the forest carbon cycle.
  •  
15.
  • Chi, Jinshu, et al. (författare)
  • Increasing contribution of peatlands to boreal evapotranspiration in a warming climate
  • 2020
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 10, s. 555-560
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate warming increases evapotranspiration (ET) more in boreal peatlands than in forests. Observations show that peatland ET can exceed forest ET by up to 30%, indicating a stronger warming response in peatlands. Earth system models do not fully account for peatlands and hence may underestimate future boreal ET.The response of evapotranspiration (ET) to warming is of critical importance to the water and carbon cycle of the boreal biome, a mosaic of land cover types dominated by forests and peatlands. The effect of warming-induced vapour pressure deficit (VPD) increases on boreal ET remains poorly understood because peatlands are not specifically represented as plant functional types in Earth system models. Here we show that peatland ET increases more than forest ET with increasing VPD using observations from 95 eddy covariance tower sites. At high VPD of more than 2 kPa, peatland ET exceeds forest ET by up to 30%. Future (2091-2100) mid-growing season peatland ET is estimated to exceed forest ET by over 20% in about one-third of the boreal biome for RCP4.5 and about two-thirds for RCP8.5. Peatland-specific ET responses to VPD should therefore be included in Earth system models to avoid biases in water and carbon cycle projections.
  •  
16.
  • Chi, Jinshu, et al. (författare)
  • The carbon balance of a managed boreal landscape measured from a tall tower in northern Sweden
  • 2019
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923 .- 1873-2240. ; 274, s. 29-41
  • Tidskriftsartikel (refereegranskat)abstract
    • Boreal forests exchange large amounts of carbon dioxide (CO2) with the atmosphere. A managed boreal landscape usually comprises various potential CO2 sinks and sources across forest stands of varying age classes, clear-cut areas, mires, and lakes. Due to this heterogeneity and complexity, large uncertainties exist regarding the net CO2 balance at the landscape scale. In this study, we present the first estimate of the net CO2 exchange over a managed boreal landscape (∼68 km2) in northern Sweden, based on tall tower eddy covariance measurements. Our results suggest that from March 1, 2016 to February 28, 2018, the heterogeneous landscape was a net CO2 sink with a 2-year mean uptake of −87 ± 6 g C m−2 yr−1. Due to an earlier and warmer spring and sunnier autumn, the landscape was a stronger CO2 sink during the first year (−122 ± 8 g C m−2) compared to the second year (−52 ± 9 g C m−2). Footprint analysis shows that 87% of the CO2 flux measurements originated from forests, whereas mires, clear-cuts, lakes, and grassland contributed 11%, 1%, 0.7%, and 0.2%, respectively. Altogether, the CO2 sink strength of the heterogeneous landscape was up to 38% lower compared to the sink strength of a mature stand surrounding the tower. Overall, this study suggests that the managed boreal landscape acted as a CO2 sink and advocates tall tower eddy covariance measurements to improve regional carbon budget estimates.
  •  
17.
  • Chi, Jinshu, et al. (författare)
  • The Net Landscape Carbon Balance—Integrating terrestrial and aquatic carbon fluxes in a managed boreal forest landscape in Sweden
  • 2020
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 26:4, s. 2353-2367
  • Tidskriftsartikel (refereegranskat)abstract
    • The boreal biome exchanges large amounts of carbon (C) and greenhouse gases (GHGs) with the atmosphere and thus significantly affects the global climate. A managed boreal landscape consists of various sinks and sources of carbon dioxide (CO2), methane (CH4), and dissolved organic and inorganic carbon (DOC and DIC) across forests, mires, lakes, and streams. Due to the spatial heterogeneity, large uncertainties exist regarding the net landscape carbon balance (NLCB). In this study, we compiled terrestrial and aquatic fluxes of CO2, CH4, DOC, DIC, and harvested C obtained from tall-tower eddy covariance measurements, stream monitoring, and remote sensing of biomass stocks for an entire boreal catchment (~68 km2) in Sweden to estimate the NLCB across the land–water–atmosphere continuum. Our results showed that this managed boreal forest landscape was a net C sink (NLCB = 39 g C m−2 year−1) with the landscape–atmosphere CO2 exchange being the dominant component, followed by the C export via harvest and streams. Accounting for the global warming potential of CH4, the landscape was a GHG sink of 237 g CO2-eq m−2 year−1, thus providing a climate-cooling effect. The CH4 flux contribution to the annual GHG budget increased from 0.6% during spring to 3.2% during winter. The aquatic C loss was most significant during spring contributing 8% to the annual NLCB. We further found that abiotic controls (e.g., air temperature and incoming radiation) regulated the temporal variability of the NLCB whereas land cover types (e.g., mire vs. forest) and management practices (e.g., clear-cutting) determined their spatial variability. Our study advocates the need for integrating terrestrial and aquatic fluxes at the landscape scale based on tall-tower eddy covariance measurements combined with biomass stock and stream monitoring to develop a holistic understanding of the NLCB of managed boreal forest landscapes and to better evaluate their potential for mitigating climate change.
  •  
18.
  • Egnell, Gustaf, et al. (författare)
  • Negative effects of stem and stump harvest and deep soil cultivation on the soil carbon and nitrogen pools are mitigated by enhanced tree growth
  • 2015
  • Ingår i: Forest Ecology and Management. - : Elsevier BV. - 0378-1127 .- 1872-7042. ; 338, s. 57-67
  • Tidskriftsartikel (refereegranskat)abstract
    • New energy policies in many forest rich countries have promoted the utilization of industrial and logging residues for energy purposes. This practice is, however, questioned from a climate change mitigation point of view, particularly when it comes to the harvest of coarse woody biomass like stem wood and stumps.Stump harvest removes slowly decomposing biomass with its carbon (C) and nutrients. The harvest operations also cause soil disturbance that may stimulate mineralization of the soil organic pool, and thereby further increase the C and nutrient loss from the site. However, increased mineralization and expected decrease in amount of competing vegetation could make more nutrients available that stimulates growth of the new tree generation and thereby compensates for the soil C loss.Based on two field experiments, located in southern and northern Sweden, we present C and nitrogen (N) pool data in soil (0-70 cm depth) and tree biomass 22 and 24 years after stem and stump harvest and deep soil cultivation (SS-DSC) in comparison to conventional stem-only harvest and a manual patch scarification (S-PS). The SS-DSC management practice represents a "worst case" in terms of potential C and N loss.We tested the hypotheses that SS-DSC (i) will reduce C and N pools in the soil; (ii) will increase C and N pools in the planted trees; (iii) will not have any effect on the total C and N pools (soil and tree biomass) as compared to S-PS.Soil C and N pools were lower following SS-DSC in line with hypothesis (i) but only statistically different for C at the northern site. Tree biomass C and N pools were significantly increased by the SS-DSC treatment in line with hypothesis (ii). As a result, the total C and N pools were not significantly affected by SS-DSC in line with hypothesis (iii).The main conclusion from these results is that judgments on the effects of silvicultural measures on the forest C and N balances or net greenhouse gas emissions cannot be based on measurements of single C or N pool changes (i.e. in the soil or in the trees only) it has to be based on changes in the total C or N pool. The trade-off between soil and tree biomass C and N pools is discussed in terms of possible causes, current forestry practices, and the climate change mitigation potential of soil vs. tree, biomass C. (C) 2014 Elsevier B.V. All rights reserved.
  •  
19.
  • Ehnvall, Betty, et al. (författare)
  • Catchment characteristics control boreal mire nutrient regime and vegetation patterns over ~5000 years of landscape development
  • 2023
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 895
  • Tidskriftsartikel (refereegranskat)abstract
    • Vegetation holds the key to many properties that make natural mires unique, such as surface microtopography, high biodiversity values, effective carbon sequestration and regulation of water and nutrient fluxes across the landscape. Despite this, landscape controls behind mire vegetation patterns have previously been poorly described at large spatial scales, which limits the understanding of basic drivers underpinning mire ecosystem services. We studied catchment controls on mire nutrient regimes and vegetation patterns using a geographically constrained natural mire chronosequence along the isostatically rising coastline in Northern Sweden. By comparing mires of different ages, we can partition vegetation patterns caused by long-term mire succession (<5000 years) and present-day vegetation responses to catchment eco-hydrological settings. We used the remote sensing based normalized difference vegetation index (NDVI) to describe mire vegetation and combined peat physicochemical measures with catchment properties to identify the most important factors that determine mire NDVI. We found strong evidence that mire NDVI depends on nutrient inputs from the catchment area or underlying mineral soil, especially concerning phosphorus and potassium concentrations. Steep mire and catchment slopes, dry conditions and large catchment areas relative to mire areas were associated with higher NDVI. We also found long-term successional patterns, with lower NDVI in older mires. Importantly, the NDVI should be used to describe mire vegetation patterns in open mires if the focus is on surface vegetation, since the canopy cover in tree-covered mires completely dominated the NDVI signal. With our study approach, we can quantitatively describe the connection between landscape properties and mire nutrient regime. Our results confirm that mire vegetation responds to the upslope catchment area, but importantly, also suggest that mire and catchment aging can override the role of catchment influence. This effect was clear across mires of all ages, but was strongest in younger mires.
  •  
20.
  • Franz, D, et al. (författare)
  • Towards long-term standardised carbon and greenhouse gas observations for monitoring Europe´s terrestrial ecosystems: a review
  • 2018
  • Ingår i: International Agrophysics. - : Walter de Gruyter GmbH. - 0236-8722 .- 2300-8725. ; 32, s. 439-455
  • Tidskriftsartikel (refereegranskat)abstract
    • Research infrastructures play a key role in launching a new generation of integrated long-term, geographically distributed observation programmes designed to monitor climate change, better understand its impacts on global ecosystems, and evaluate possible mitigation and adaptation strategies. The pan-European Integrated Carbon Observation System combines carbon and greenhouse gas (GHG; CO2, CH4, N2O, H2O) observations within the atmosphere, terrestrial ecosystems and oceans. High-precision measurements are obtained using standardised methodologies, are centrally processed and openly available in a traceable and verifiable fashion in combination with detailed metadata. The Integrated Carbon Observation System ecosystem station network aims to sample climate and land-cover variability across Europe. In addition to GHG flux measurements, a large set of complementary data (including management practices, vegetation and soil characteristics) is collected to support the interpretation, spatial upscaling and modelling of observed ecosystem carbon and GHG dynamics. The applied sampling design was developed and formulated in protocols by the scientific community, representing a trade-off between an ideal dataset and practical feasibility. The use of open-access, high-quality and multi-level data products by different user communities is crucial for the Integrated Carbon Observation System in order to achieve its scientific potential and societal value.
  •  
21.
  • Gundale, Michael, et al. (författare)
  • The biological controls of soil carbon accumulation following wildfire and harvest in boreal forests : a review
  • 2024
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 30:5
  • Forskningsöversikt (refereegranskat)abstract
    • Boreal forests are frequently subjected to disturbances, including wildfire and clear-cutting. While these disturbances can cause soil carbon (C) losses, the long-term accumulation dynamics of soil C stocks during subsequent stand development is controlled by biological processes related to the balance of net primary production (NPP) and outputs via heterotrophic respiration and leaching, many of which remain poorly understood. We review the biological processes suggested to influence soil C accumulation in boreal forests. Our review indicates that median C accumulation rates following wildfire and clear-cutting are similar (0.15 and 0.20 Mg ha−1 year−1, respectively), however, variation between studies is extremely high. Further, while many individual studies show linear increases in soil C stocks through time after disturbance, there are indications that C stock recovery is fastest early to mid-succession (e.g. 15–80 years) and then slows as forests mature (e.g. >100 years). We indicate that the rapid build-up of soil C in younger stands appears not only driven by higher plant production, but also by a high rate of mycorrhizal hyphal production, and mycorrhizal suppression of saprotrophs. As stands mature, the balance between reductions in plant and mycorrhizal production, increasing plant litter recalcitrance, and ectomycorrhizal decomposers and saprotrophs have been highlighted as key controls on soil C accumulation rates. While some of these controls appear well understood (e.g. temporal patterns in NPP, changes in aboveground litter quality), many others remain research frontiers. Notably, very little data exists describing and comparing successional patterns of root production, mycorrhizal functional traits, mycorrhizal-saprotroph interactions, or C outputs via heterotrophic respiration and dissolved organic C following different disturbances. We argue that these less frequently described controls require attention, as they will be key not only for understanding ecosystem C balances, but also for representing these dynamics more accurately in soil organic C and Earth system models.
  •  
22.
  • Gundale, Michael, et al. (författare)
  • The biological controls of soil carbon accumulation following wildfire and harvest in boreal forests: A review
  • 2024
  • Ingår i: Global Change Biology. - 1354-1013 .- 1365-2486. ; 30
  • Forskningsöversikt (refereegranskat)abstract
    • Boreal forests are frequently subjected to disturbances, including wildfire and clear-cutting. While these disturbances can cause soil carbon (C) losses, the long-term accumulation dynamics of soil C stocks during subsequent stand development is controlled by biological processes related to the balance of net primary production (NPP) and outputs via heterotrophic respiration and leaching, many of which remain poorly understood. We review the biological processes suggested to influence soil C accumulation in boreal forests. Our review indicates that median C accumulation rates following wildfire and clear-cutting are similar (0.15 and 0.20 Mg ha(-1) year(-1), respectively), however, variation between studies is extremely high. Further, while many individual studies show linear increases in soil C stocks through time after disturbance, there are indications that C stock recovery is fastest early to mid-succession (e.g. 15-80 years) and then slows as forests mature (e.g. >100 years). We indicate that the rapid build-up of soil C in younger stands appears not only driven by higher plant production, but also by a high rate of mycorrhizal hyphal production, and mycorrhizal suppression of saprotrophs. As stands mature, the balance between reductions in plant and mycorrhizal production, increasing plant litter recalcitrance, and ectomycorrhizal decomposers and saprotrophs have been highlighted as key controls on soil C accumulation rates. While some of these controls appear well understood (e.g. temporal patterns in NPP, changes in aboveground litter quality), many others remain research frontiers. Notably, very little data exists describing and comparing successional patterns of root production, mycorrhizal functional traits, mycorrhizal-saprotroph interactions, or C outputs via heterotrophic respiration and dissolved organic C following different disturbances. We argue that these less frequently described controls require attention, as they will be key not only for understanding ecosystem C balances, but also for representing these dynamics more accurately in soil organic C and Earth system models.
  •  
23.
  • Helbig, M., et al. (författare)
  • Warming response of peatland CO2 sink is sensitive to seasonality in warming trends
  • 2022
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-6798 .- 1758-678X. ; 12:8, s. 743-749
  • Tidskriftsartikel (refereegranskat)abstract
    • Peatlands have acted as net CO2 sinks over millennia, exerting a global climate cooling effect. Rapid warming at northern latitudes, where peatlands are abundant, can disturb their CO2 sink function. Here we show that sensitivity of peatland net CO2 exchange to warming changes in sign and magnitude across seasons, resulting in complex net CO2 sink responses. We use multiannual net CO2 exchange observations from 20 northern peatlands to show that warmer early summers are linked to increased net CO2 uptake, while warmer late summers lead to decreased net CO2 uptake. Thus, net CO2 sinks of peatlands in regions experiencing early summer warming, such as central Siberia, are more likely to persist under warmer climate conditions than are those in other regions. Our results will be useful to improve the design of future warming experiments and to better interpret large-scale trends in peatland net CO2 uptake over the coming few decades.
  •  
24.
  • Hensgens, Geert, et al. (författare)
  • The role of the understory in litter DOC and nutrient leaching in boreal forests
  • 2020
  • Ingår i: Biogeochemistry. - : Springer Science and Business Media LLC. - 0168-2563 .- 1573-515X. ; 149:1, s. 87-103
  • Tidskriftsartikel (refereegranskat)abstract
    • Dissolved organic carbon (DOC) derived from plant litter plays an important role in the ecosystem carbon balance and soil biogeochemistry. However, in boreal coniferous forests no integrated understanding exists of how understory vegetation contributes to litter leaching of DOC, nitrogen (N) and phosphorus (P) with different bioavailability at the forest stand level. We characterized water extractable leachates from fresh and decayed litter of dominant canopy and understory sources in a boreal coniferous forest, in order to explore the contribution of understory vegetation as a source of both total and bioavailable forms of DOC, N and P. Recently produced litter from deciduous species (including Vaccinium myrtillus) yielded the highest amounts of DOC. However, this leaching potential decreased exponentially with mass loss through litter decay. The DOC lability generally showed little interspecific variation, although wood derived DOC was more recalcitrant. Lability decreased progressively with litter aging. Water extractable nutrients increased proportionally with DOC, and roughly a quarter (N) or half (P) had directly bioavailable inorganic forms. Scaled to annual litterfall at the forest stand, understory vegetation contributed ~ 80% of the water extractable DOC and nutrients from fresh litter, with > 60% coming from Vaccinium myrtillus alone. However, as litter decomposes, the data suggest a lower leaching potential is maintained with a larger contribution from needle, wood and moss litter. Our study shows that understory vegetation, especially V. myrtillus, is a key driver of litter DOC and nutrient leaching in boreal coniferous forests.
  •  
25.
  • Jocher, Georg, et al. (författare)
  • Apparent Winter CO2 uptake by a boreal forest due to decoupling
  • 2017
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923 .- 1873-2240. ; 232, s. 23-34
  • Tidskriftsartikel (refereegranskat)abstract
    • Net uptake of carbon dioxide (CO2) was observed during the winter when using the eddy covariance (EC) technique above a 90-year-old Scots pine (Pinus sylvestris L.) stand in northern Sweden. This uptake occurred despite photosynthetic dormancy. This discrepancy led us to investigate the potential impact of decoupling of below- and above-canopy air mass flow and accompanying below-canopy horizontal advection on these measurements. We used the correlation of above- and below-canopy standard deviation of vertical wind speed (sigma(w)), derived from EC measurements above and below the canopy, as the main mixing criterion. We identified 0.33 m s(-1) and 0.06 m s(-1) as site-specific o thresholds for above and below canopy, respectively, to reach the fully coupled state. Decoupling was observed in 45% of all cases during the measurement period (5.11.2014-25.2.2015). After filtering out decoupled periods the above-canopy mean winter NEE shifted from -0.52 mu mol m(-2) s(-1) to a more reasonable positive value of 0.31 mu mol m(-2) s(-1). None of the above-canopy data filtering criteria we tested (i.e., friction velocity threshold; horizontal wind speed threshold; single-level sigma(w) threshold) ensured sufficient mixing. All missed critical periods that were detected only by the two-level filtering approach. Tower-surrounding topography induced a predominant below-canopy wind direction and consequent wind shear between above- and below-canopy air masses. These processes may foster decoupling and below-canopy removal of CO2 rich air. To determine how broadly such a topographical influence might apply, we compared the topography surrounding our tower to that surrounding other forest flux sites worldwide. Medians of maximum elevation differences within 300m and 1000 m around 110 FLUXNET forest EC towers were 24 m and 66 m, respectively, compared to 24 m and 114 m, respectively, at our site. Consequently, below canopy flow may influence above-canopy NEE detections at many forested EC sites. Based on our findings we suggest below-canopy measurements as standard procedure at sites evaluating forest CO2 budgets.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 115
Typ av publikation
tidskriftsartikel (107)
forskningsöversikt (7)
bokkapitel (1)
Typ av innehåll
refereegranskat (114)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Peichl, Matthias (115)
Nilsson, Mats (55)
Laudon, Hjalmar (20)
Chi, Jinshu (12)
Lundmark, Tomas (11)
Ottosson Löfvenius, ... (10)
visa fler...
Mammarella, Ivan (10)
Lindroth, Anders (9)
Mölder, Meelis (9)
Wallerman, Jörgen (8)
Linder, Sune (8)
Marshall, John (8)
Lohila, A. (7)
Näsholm, Torgny (7)
Kljun, Natascha (7)
Aurela, Mika (7)
Aurela, M. (6)
Laurila, T. (6)
Öquist, Mats (6)
Ibrom, Andreas (6)
Nilsson, Mats B. (6)
Papale, Dario (5)
Mammarella, I. (5)
Sachs, Torsten (5)
Hasselquist, Niles (5)
Weslien, Per, 1963 (5)
Heliasz, Michal (5)
Sonnentag, Oliver (5)
Vesala, Timo (5)
Zona, Donatella (5)
Grelle, Achim (5)
Rebmann, Corinna (5)
Loustau, Denis (5)
Rinne, J (4)
Montagnani, Leonardo (4)
Vesala, T. (4)
Tuittila, E. S. (4)
Klemedtsson, Leif, 1 ... (4)
Desai, Ankur R. (4)
Knohl, Alexander (4)
Helbig, Manuel (4)
Lim, Hyungwoo (4)
Rinne, Janne (4)
Friborg, Thomas (4)
Lohila, Annalea (4)
Klosterhalfen, Anne (4)
Jocher, Georg (4)
Ågren, Anneli M. (4)
Maher Hasselquist, E ... (4)
Peltola, Olli (4)
visa färre...
Lärosäte
Sveriges Lantbruksuniversitet (110)
Lunds universitet (32)
Göteborgs universitet (9)
Stockholms universitet (9)
Umeå universitet (6)
Linnéuniversitetet (4)
visa fler...
Kungliga Tekniska Högskolan (1)
Uppsala universitet (1)
Jönköping University (1)
Malmö universitet (1)
visa färre...
Språk
Engelska (115)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (80)
Lantbruksvetenskap (67)
Teknik (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy