SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Peltier W. Richard) "

Sökning: WFRF:(Peltier W. Richard)

  • Resultat 1-17 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arndt, D. S., et al. (författare)
  • STATE OF THE CLIMATE IN 2017
  • 2018
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 99:8, s. S1-S310
  • Forskningsöversikt (refereegranskat)
  •  
2.
  • Stokes, Chris R., et al. (författare)
  • On the reconstruction of palaeo-ice sheets : Recent advances and future challenges
  • 2015
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 125, s. 15-49
  • Forskningsöversikt (refereegranskat)abstract
    • Reconstructing the growth and decay of palaeo-ice sheets is critical to understanding mechanisms of global climate change and associated sea-level fluctuations in the past, present and future. The significance of palaeo-ice sheets is further underlined by the broad range of disciplines concerned with reconstructing their behaviour, many of which have undergone a rapid expansion since the 1980s. In particular, there has been a major increase in the size and qualitative diversity of empirical data used to reconstruct and date ice sheets, and major improvements in our ability to simulate their dynamics in numerical ice sheet models. These developments have made it increasingly necessary to forge interdisciplinary links between sub-disciplines and to link numerical modelling with observations and dating of proxy records. The aim of this paper is to evaluate recent developments in the methods used to reconstruct ice sheets and outline some key challenges that remain, with an emphasis on how future work might integrate terrestrial and marine evidence together with numerical modelling. Our focus is on pan-ice sheet reconstructions of the last deglaciation, but regional case studies are used to illustrate methodological achievements, challenges and opportunities. Whilst various disciplines have made important progress in our understanding of ice-sheet dynamics, it is clear that data-model integration remains under-used, and that uncertainties remain poorly quantified in both empirically-based and numerical ice-Sheet reconstructions. The representation of past climate will continue to be the largest source of uncertainty for numerical modelling. As such, palaeo-observations are critical to constrain and validate modelling. State-of-the-art numerical models will continue to improve both in model resolution and in the breadth of inclusion of relevant processes, thereby enabling more accurate and more direct comparison with the increasing range of palaeo-observations. Thus, the capability is developing to use all relevant palaeo-records to more strongly constrain deglacial (and to a lesser extent pre-LGM) ice sheet evolution. In working towards that goal, the accurate representation of uncertainties is required for both constraint data and model outputs. Close cooperation between modelling and data-gathering communities is essential to ensure this capability is realised and continues to progress.
  •  
3.
  • Brierley, Chris M., et al. (författare)
  • Large-scale features and evaluation of the PMIP4-CMIP6 midHolocene simulations
  • 2020
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 16:5, s. 1847-1872
  • Tidskriftsartikel (refereegranskat)abstract
    • The mid-Holocene (6000 years ago) is a standard time period for the evaluation of the simulated response of global climate models using palaeoclimate reconstructions. The latest mid-Holocene simulations are a palaeoclimate entry card for the Palaeoclimate Model Intercomparison Project (PMIP4) component of the current phase of the Coupled Model Intercomparison Project (CMIP6) - hereafter referred to as PMIP4-CMIP6. Here we provide an initial analysis and evaluation of the results of the experiment for the mid-Holocene. We show that state-of-the-art models produce climate changes that are broadly consistent with theory and observations, including increased summer warming of the Northern Hemisphere and associated shifts in tropical rainfall. Many features of the PMIP4-CMIP6 simulations were present in the previous generation (PMIP3-CMIP5) of simulations. The PMIP4-CMIP6 ensemble for the mid-Holocene has a global mean temperature change of -0.3 K, which is -0.2K cooler than the PMIP3-CMIP5 simulations predominantly as a result of the prescription of realistic greenhouse gas concentrations in PMIP4-CMIP6. Biases in the magnitude and the sign of regional responses identified in PMIP3-CMIP5, such as the amplification of the northern African monsoon, precipitation changes over Europe, and simulated aridity in mid-Eurasia, are still present in the PMIP4-CMIP6 simulations. Despite these issues, PMIP4-CMIP6 and the mid-Holocene provide an opportunity both for quantitative evaluation and derivation of emergent constraints on the hydrological cycle, feedback strength, and potentially climate sensitivity.
  •  
4.
  • Brown, Josephine R., et al. (författare)
  • Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models
  • 2020
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 16:5, s. 1777-1805
  • Tidskriftsartikel (refereegranskat)abstract
    • El Niño–Southern Oscillation (ENSO) is the strongest mode of interannual climate variability in the current climate, influencing ecosystems, agriculture, and weather systems across the globe, but future projections of ENSO frequency and amplitude remain highly uncertain. A comparison of changes in ENSO in a range of past and future climate simulations can provide insights into the sensitivity of ENSO to changes in the mean state, including changes in the seasonality of incoming solar radiation, global average temperatures, and spatial patterns of sea surface temperatures. As a comprehensive set of coupled model simulations is now available for both palaeoclimate time slices (the Last Glacial Maximum, mid-Holocene, and last interglacial) and idealised future warming scenarios (1 % per year CO2 increase, abrupt four-time CO2 increase), this allows a detailed evaluation of ENSO changes in this wide range of climates. Such a comparison can assist in constraining uncertainty in future projections, providing insights into model agreement and the sensitivity of ENSO to a range of factors. The majority of models simulate a consistent weakening of ENSO activity in the last interglacial and mid-Holocene experiments, and there is an ensemble mean reduction of variability in the western equatorial Pacific in the Last Glacial Maximum experiments. Changes in global temperature produce a weaker precipitation response to ENSO in the cold Last Glacial Maximum experiments and an enhanced precipitation response to ENSO in the warm increased CO2 experiments. No consistent relationship between changes in ENSO amplitude and annual cycle was identified across experiments.
  •  
5.
  • de Nooijer, Wesley, et al. (författare)
  • Evaluation of Arctic warming in mid-Pliocene climate simulations
  • 2020
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 16:6, s. 2325-2341
  • Tidskriftsartikel (refereegranskat)abstract
    • Palaeoclimate simulations improve our understanding of the climate, inform us about the performance of climate models in a different climate scenario, and help to identify robust features of the climate system. Here, we analyse Arctic warming in an ensemble of 16 simulations of the mid-Pliocene Warm Period (mPWP), derived from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2). The PlioMIP2 ensemble simulates Arctic (60-90 degrees N) annual mean surface air temperature (SAT) increases of 3.7 to 11.6 degrees C compared to the pre-industrial period, with a multimodel mean (MMM) increase of 7.2 degrees C. The Arctic warming amplification ratio relative to global SAT anomalies in the ensemble ranges from 1.8 to 3.1 (MMM is 2.3). Sea ice extent anomalies range from -3.0 to -10.4 x 10(6) km(2), with a MMM anomaly of -5.6 x 10 6 km(2), which constitutes a decrease of 53 % compared to the pre-industrial period. The majority (11 out of 16) of models simulate summer seaice-free conditions (<= 1 x 10(6) km(2)) in their mPWP simulation. The ensemble tends to underestimate SAT in the Arctic when compared to available reconstructions, although the degree of underestimation varies strongly between the simulations. The simulations with the highest Arctic SAT anomalies tend to match the proxy dataset in its current form better. The ensemble shows some agreement with reconstructions of sea ice, particularly with regard to seasonal sea ice. Large uncertainties limit the confidence that can be placed in the findings and the compatibility of the different proxy datasets. We show that while reducing uncertainties in the reconstructions could decrease the SAT data-model discord substantially, further improvements are likely to be found in enhanced boundary conditions or model physics. Lastly, we compare the Arctic warming in the mPWP to projections of future Arctic warming and find that the PlioMIP2 ensemble simulates greater Arctic amplification than CMIP5 future climate simulations and an increase instead of a decrease in Atlantic Meridional Overturning Circulation (AMOC) strength compared to pre-industrial period. The results highlight the importance of slow feedbacks in equilibrium climate simulations, and that caution must be taken when using simulations of the mPWP as an analogue for future climate change.
  •  
6.
  • Feng, Ran, et al. (författare)
  • Past terrestrial hydroclimate sensitivity controlled by Earth system feedbacks
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite tectonic conditions and atmospheric CO2 levels (pCO2) similar to those of present-day, geological reconstructions from the mid-Pliocene (3.3-3.0 Ma) document high lake levels in the Sahel and mesic conditions in subtropical Eurasia, suggesting drastic reorganizations of subtropical terrestrial hydroclimate during this interval. Here, using a compilation of proxy data and multi-model paleoclimate simulations, we show that the mid-Pliocene hydroclimate state is not driven by direct CO2 radiative forcing but by a loss of northern high-latitude ice sheets and continental greening. These ice sheet and vegetation changes are long-term Earth system feedbacks to elevated pCO2. Further, the moist conditions in the Sahel and subtropical Eurasia during the mid-Pliocene are a product of enhanced tropospheric humidity and a stationary wave response to the surface warming pattern, which varies strongly with land cover changes. These findings highlight the potential for amplified terrestrial hydroclimate responses over long timescales to a sustained CO2 forcing.
  •  
7.
  • Guo, Donglin, et al. (författare)
  • Highly restricted near-surface permafrost extent during the mid-Pliocene warm period
  • 2023
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - 0027-8424 .- 1091-6490. ; 120:36
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate understanding of permafrost dynamics is critical for evaluating and mitigating impacts that may arise as permafrost degrades in the future; however, existing projections have large uncertainties. Studies of how permafrost responded historically during Earth's past warm periods are helpful in exploring potential future permafrost behavior and to evaluate the uncertainty of future permafrost change projections. Here, we combine a surface frost index model with outputs from the second phase of the Pliocene Model Intercomparison Project to simulate the near-surface (similar to 3 to 4 m depth) permafrost state in the Northern Hemisphere during the mid-Pliocene warm period (mPWP, similar to 3.264 to 3.025 Ma). This period shares similarities with the projected future climate. Constrained by proxy-based surface air temperature records, our simulations demonstrate that near-surface permafrost was highly spatially restricted during the mPWP and was 93 +/- 3% smaller than the preindustrial extent. Near-surface permafrost was present only in the eastern Siberian uplands, Canadian high Arctic Archipelago, and northernmost Greenland. The simulations are similar to near-surface permafrost changes projected for the end of this century under the SSP5-8.5 scenario and provide a perspective on the potential permafrost behavior that may be expected in a warmer world.
  •  
8.
  • Han, Zixuan, et al. (författare)
  • Evaluating the large-scale hydrological cycle response within the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) ensemble
  • 2021
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 17:6, s. 2537-2558
  • Tidskriftsartikel (refereegranskat)abstract
    • The mid-Pliocene (∼3 Ma) is one of the most recent warm periods with high CO2 concentrations in the atmosphere and resulting high temperatures, and it is often cited as an analog for near-term future climate change. Here, we apply a moisture budget analysis to investigate the response of the large-scale hydrological cycle at low latitudes within a 13-model ensemble from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2). The results show that increased atmospheric moisture content within the mid-Pliocene ensemble (due to the thermodynamic effect) results in wetter conditions over the deep tropics, i.e., the Pacific intertropical convergence zone (ITCZ) and the Maritime Continent, and drier conditions over the subtropics. Note that the dynamic effect plays a more important role than the thermodynamic effect in regional precipitation minus evaporation (PmE) changes (i.e., northward ITCZ shift and wetter northern Indian Ocean). The thermodynamic effect is offset to some extent by a dynamic effect involving a northward shift of the Hadley circulation that dries the deep tropics and moistens the subtropics in the Northern Hemisphere (i.e., the subtropical Pacific). From the perspective of Earth's energy budget, the enhanced southward cross-equatorial atmospheric transport (0.22 PW), induced by the hemispheric asymmetries of the atmospheric energy, favors an approximately 1∘ northward shift of the ITCZ. The shift of the ITCZ reorganizes atmospheric circulation, favoring a northward shift of the Hadley circulation. In addition, the Walker circulation consistently shifts westward within PlioMIP2 models, leading to wetter conditions over the northern Indian Ocean. The PlioMIP2 ensemble highlights that an imbalance of interhemispheric atmospheric energy during the mid-Pliocene could have led to changes in the dynamic effect, offsetting the thermodynamic effect and, hence, altering mid-Pliocene hydroclimate.
  •  
9.
  • Haywood, Alan M., et al. (författare)
  • The Pliocene Model Intercomparison Project Phase 2 : large-scale climate features and climate sensitivity
  • 2020
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 16:6, s. 2095-2123
  • Tidskriftsartikel (refereegranskat)abstract
    • The Pliocene epoch has great potential to improve our understanding of the long-term climatic and environmental consequences of an atmospheric CO2 concentration near similar to 400 parts per million by volume. Here we present the large-scale features of Pliocene climate as simulated by a new ensemble of climate models of varying complexity and spatial resolution based on new reconstructions of boundary conditions (the Pliocene Model Intercomparison Project Phase 2; PlioMIP2). As a global annual average, modelled surface air temperatures increase by between 1.7 and 5.2 degrees C relative to the pre-industrial era with a multi-model mean value of 3.2 degrees C. Annual mean total precipitation rates increase by 7 % (range: 2 %-13 %). On average, surface air temperature (SAT) increases by 4.3 degrees C over land and 2.8 degrees C over the oceans. There is a clear pattern of polar amplification with warming polewards of 60 degrees N and 60 degrees S exceeding the global mean warming by a factor of 2.3. In the Atlantic and Pacific oceans, meridional temperature gradients are reduced, while tropical zonal gradients remain largely unchanged. There is a statistically significant relationship between a model's climate response associated with a doubling in CO2 (equilibrium climate sensitivity; ECS) and its simulated Pliocene surface temperature response. The mean ensemble Earth system response to a doubling of CO2 (including ice sheet feedbacks) is 67 % greater than ECS; this is larger than the increase of 47 % obtained from the PlioMIP1 ensemble. Proxy-derived estimates of Pliocene sea surface temperatures are used to assess model estimates of ECS and give an ECS range of 2.6-4.8 degrees C. This result is in general accord with the ECS range presented by previous Intergovernmental Panel on Climate Change (IPCC) Assessment Reports.
  •  
10.
  • Kageyama, Masa, et al. (författare)
  • The PMIP4 contribution to CMIP6-Part 1 : Overview and over-arching analysis plan
  • 2018
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 11:3, s. 1033-1057
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper is the first of a series of four GMD papers on the PMIP4-CMIP6 experiments. Part 2 (OttoBliesner et al., 2017) gives details about the two PMIP4-CMIP6 interglacial experiments, Part 3 (Jungclaus et al., 2017) about the last millennium experiment, and Part 4 (Kageyama et al., 2017) about the Last Glacial Maximum experiment. The mid-Pliocene Warm Period experiment is part of the Pliocene Model Intercomparison Project (PlioMIP) Phase 2, detailed in Haywood et al. (2016). The goal of the Paleoclimate Modelling Intercomparison Project (PMIP) is to understand the response of the climate system to different climate forcings for documented climatic states very different from the present and historical climates. Through comparison with observations of the environmental impact of these climate changes, or with climate reconstructions based on physical, chemical, or biological records, PMIP also addresses the issue of how well state-of-the-art numerical models simulate climate change. Climate models are usually developed using the present and historical climates as references, but climate projections show that future climates will lie well outside these conditions. Palaeoclimates very different from these reference states therefore provide stringent tests for state-of-the-art models and a way to assess whether their sensitivity to forcings is compatible with palaeoclimatic evidence. Simulations of five different periods have been designed to address the objectives of the sixth phase of the Coupled Model Intercomparison Project (CMIP6): the millennium prior to the industrial epoch (CMIP6 name: past1000); the mid-Holocene, 6000 years ago (midHolocene); the Last Glacial Maximum, 21 000 years ago (lgm); the Last Interglacial, 127 000 years ago (lig127k); and the mid-Pliocene Warm Period, 3.2 million years ago (midPliocene-eoi400). These climatic periods are well documented by palaeoclimatic and palaeoenvironmental records, with climate and environmental changes relevant for the study and projection of future climate changes. This paper describes the motivation for the choice of these periods and the design of the numerical experiments and database requests, with a focus on their novel features compared to the experiments performed in previous phases of PMIP and CMIP. It also outlines the analysis plan that takes advantage of the comparisons of the results across periods and across CMIP6 in collaboration with other MIPs.
  •  
11.
  • Kageyama, Masa, et al. (författare)
  • The PMIP4 contribution to CMIP6-Part 4 : Scientific objectives and experimental design of the PMIP4-CMIP6 Last Glacial Maximum experiments and PMIP4 sensitivity experiments
  • 2017
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 10:11, s. 4035-4055
  • Tidskriftsartikel (refereegranskat)abstract
    • The Last Glacial Maximum (LGM, 21 000 years ago) is one of the suite of paleoclimate simulations included in the current phase of the Coupled Model Intercomparison Project (CMIP6). It is an interval when insolation was similar to the present, but global ice volume was at a maximum, eustatic sea level was at or close to a minimum, greenhouse gas concentrations were lower, atmospheric aerosol loadings were higher than today, and vegetation and land-surface characteristics were different from today. The LGM has been a focus for the Paleoclimate Modelling Intercomparison Project (PMIP) since its inception, and thus many of the problems that might be associated with simulating such a radically different climate are well documented. The LGM state provides an ideal case study for evaluating climate model performance because the changes in forcing and temperature between the LGM and pre-industrial are of the same order of magnitude as those projected for the end of the 21st century. Thus, the CMIP6 LGM experiment could provide additional information that can be used to constrain estimates of climate sensitivity. The design of the Tier 1 LGM experiment (lgm) includes an assessment of uncertainties in boundary conditions, in particular through the use of different reconstructions of the ice sheets and of the change in dust forcing. Additional (Tier 2) sensitivity experiments have been designed to quantify feedbacks associated with land-surface changes and aerosol loadings, and to isolate the role of individual forcings. Model analysis and evaluation will capitalize on the relative abundance of paleoenvironmental observations and quantitative climate reconstructions already available for the LGM.
  •  
12.
  • Oldeman, Arthur M., et al. (författare)
  • Reduced El Niño variability in the mid-Pliocene according to the PlioMIP2 ensemble
  • 2021
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 17:6, s. 2427-2450
  • Tidskriftsartikel (refereegranskat)abstract
    • The mid-Pliocene warm period (3.264–3.025 Ma) is the most recent geological period during which atmospheric CO2 levels were similar to recent historical values (∼400 ppm). Several proxy reconstructions for the mid-Pliocene show highly reduced zonal sea surface temperature (SST) gradients in the tropical Pacific Ocean, indicating an El Niño-like mean state. However, past modelling studies do not show these highly reduced gradients. Efforts to understand mid-Pliocene climate dynamics have led to the Pliocene Model Intercomparison Project (PlioMIP). Results from the first phase (PlioMIP1) showed clear El Niño variability (albeit significantly reduced) and did not show the greatly reduced time-mean zonal SST gradient suggested by some of the proxies.In this work, we study El Niño–Southern Oscillation (ENSO) variability in the PlioMIP2 ensemble, which consists of additional global coupled climate models and updated boundary conditions compared to PlioMIP1. We quantify ENSO amplitude, period, spatial structure and “flavour”, as well as the tropical Pacific annual mean state in mid-Pliocene and pre-industrial simulations. Results show a reduced ENSO amplitude in the model-ensemble mean (−24 %) with respect to the pre-industrial, with 15 out of 17 individual models showing such a reduction. Furthermore, the spectral power of this variability considerably decreases in the 3–4-year band. The spatial structure of the dominant empirical orthogonal function shows no particular change in the patterns of tropical Pacific variability in the model-ensemble mean, compared to the pre-industrial. Although the time-mean zonal SST gradient in the equatorial Pacific decreases for 14 out of 17 models (0.2 ∘C reduction in the ensemble mean), there does not seem to be a correlation with the decrease in ENSO amplitude. The models showing the most “El Niño-like” mean state changes show a similar ENSO amplitude to that in the pre-industrial reference, while models showing more “La Niña-like” mean state changes generally show a large reduction in ENSO variability. The PlioMIP2 results show a reasonable agreement with both time-mean proxies indicating a reduced zonal SST gradient and reconstructions indicating a reduced, or similar, ENSO variability.
  •  
13.
  • Pontes, Gabriel M., et al. (författare)
  • Drier tropical and subtropical Southern Hemisphere in the mid-Pliocene Warm Period
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Thermodynamic arguments imply that global mean rainfall increases in a warmer atmosphere; however, dynamical effects may result in more significant diversity of regional precipitation change. Here we investigate rainfall changes in the mid-Pliocene Warm Period (similar to 3 Ma), a time when temperatures were 2-3 degrees C warmer than the pre-industrial era, using output from the Pliocene Model Intercomparison Projects phases 1 and 2 and sensitivity climate model experiments. In the Mid-Pliocene simulations, the higher rates of warming in the northern hemisphere create an interhemispheric temperature gradient that enhances the southward cross-equatorial energy flux by up to 48%. This intensified energy flux reorganizes the atmospheric circulation leading to a northward shift of the Inter-Tropical Convergence Zone and a weakened and poleward displaced Southern Hemisphere Subtropical Convergences Zones. These changes result in drier-than-normal Southern Hemisphere tropics and subtropics. The evaluation of the mid-Pliocene adds a constraint to possible future warmer scenarios associated with differing rates of warming between hemispheres.
  •  
14.
  • Pontes, Gabriel M., et al. (författare)
  • Mid-Pliocene El Niño/Southern Oscillation suppressed by Pacific intertropical convergence zone shift
  • 2022
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 15:9, s. 726-734
  • Tidskriftsartikel (refereegranskat)abstract
    • The El Niño/Southern Oscillation (ENSO), the dominant driver of year-to-year climate variability in the equatorial Pacific Ocean, impacts climate pattern across the globe. However, the response of the ENSO system to past and potential future temperature increases is not fully understood. Here we investigate ENSO variability in the warmer climate of the mid-Pliocene (~3.0–3.3 Ma), when surface temperatures were ~2–3 °C above modern values, in a large ensemble of climate models—the Pliocene Model Intercomparison Project. We show that the ensemble consistently suggests a weakening of ENSO variability, with a mean reduction of 25% (±16%). We further show that shifts in the equatorial Pacific mean state cannot fully explain these changes. Instead, ENSO was suppressed by a series of off-equatorial processes triggered by a northward displacement of the Pacific intertropical convergence zone: weakened convective feedback and intensified Southern Hemisphere circulation, which inhibit various processes that initiate ENSO. The connection between the climatological intertropical convergence zone position and ENSO we find in the past is expected to operate in our warming world with important ramifications for ENSO variability. 
  •  
15.
  • Ren, Xin, et al. (författare)
  • The hydrological cycle and ocean circulation of the Maritime Continent in the Pliocene : results from PlioMIP2
  • 2023
  • Ingår i: Climate of the Past. - 1814-9324 .- 1814-9332. ; 19:10, s. 2053-2077
  • Tidskriftsartikel (refereegranskat)abstract
    • The Maritime Continent (MC) forms the western boundary of the tropical Pacific Ocean, and relatively small changes in this region can impact the climate locally and remotely. In the mid-Piacenzian warm period of the Pliocene (mPWP; 3.264 to 3.025 Ma) atmospheric CO2 concentrations were ∼ 400 ppm, and the subaerial Sunda and Sahul shelves made the land–sea distribution of the MC different to today. Topographic changes and elevated levels of CO2, combined with other forcings, are therefore expected to have driven a substantial climate signal in the MC region at this time. By using the results from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2), we study the mean climatic features of the MC in the mPWP and changes in Indonesian Throughflow (ITF) with respect to the preindustrial. Results show a warmer and wetter mPWP climate of the MC and lower sea surface salinity in the surrounding ocean compared with the preindustrial. Furthermore, we quantify the volume transfer through the ITF; although the ITF may be expected to be hindered by the subaerial shelves, 10 out of 15 models show an increased volume transport compared with the preindustrial.In order to avoid undue influence from closely related models that are present in the PlioMIP2 ensemble, we introduce a new metric, the multi-cluster mean (MCM), which is based on cluster analysis of the individual models. We study the effect that the choice of MCM versus the more traditional analysis of multi-model mean (MMM) and individual models has on the discrepancy between model results and data. We find that models, which reproduce modern MC climate well, are not always good at simulating the mPWP climate anomaly of the MC. By comparing with individual models, the MMM and MCM reproduce the preindustrial sea surface temperature (SST) of the reanalysis better than most individual models and produce less discrepancy with reconstructed sea surface temperature anomalies (SSTA) than most individual models in the MC. In addition, the clusters reveal spatial signals that are not captured by the MMM, so that the MCM provides us with a new way to explore the results from model ensembles that include similar models.
  •  
16.
  • Weiffenbach, Julia E., et al. (författare)
  • Unraveling the mechanisms and implications of a stronger mid-Pliocene Atlantic Meridional Overturning Circulation (AMOC) in PlioMIP2
  • 2023
  • Ingår i: Climate of the Past. - : COPERNICUS GESELLSCHAFT MBH. - 1814-9324 .- 1814-9332. ; 19:1, s. 61-85
  • Tidskriftsartikel (refereegranskat)abstract
    • The mid-Pliocene warm period (3.264-3.025 Ma) is the most recent geological period in which the atmospheric CO2 concentration was approximately equal to the concentration we measure today (ca. 400 ppm). Sea surface temperature (SST) proxies indicate above-average warming over the North Atlantic in the mid-Pliocene with respect to the pre-industrial period, which may be linked to an intensified Atlantic Meridional Overturning Circulation (AMOC). Earlier results from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) show that the ensemble simulates a stronger AMOC in the mid-Pliocene than in the pre-industrial. However, no consistent relationship between the stronger mid-Pliocene AMOC and either the Atlantic northward ocean heat transport (OHT) or average North Atlantic SSTs has been found. In this study, we look further into the drivers and consequences of a stronger AMOC in mid-Pliocene compared to pre-industrial simulations in PlioMIP2. We find that all model simulations with a closed Bering Strait and Canadian Archipelago show reduced freshwater transport from the Arctic Ocean into the North Atlantic. This contributes to an increase in salinity in the subpolar North Atlantic and Labrador Sea that can be linked to the stronger AMOC in the mid-Pliocene. To investigate the dynamics behind the ensembles variable response of the total Atlantic OHT to the stronger AMOC, we separate the Atlantic OHT into two components associated with either the overturning circulation or the wind-driven gyre circulation. While the ensemble mean of the overturning component is increased significantly in magnitude in the mid-Pliocene, it is partly compensated by a reduction in the gyre component in the northern subtropical gyre region. This indicates that the lack of relationship between the total OHT and AMOC is due to changes in OHT by the subtropical gyre. The overturning and gyre components should therefore be considered separately to gain a more complete understanding of the OHT response to a stronger mid-Pliocene AMOC. In addition, we show that the AMOC exerts a stronger influence on North Atlantic SSTs in the mid-Pliocene than in the pre-industrial, providing a possible explanation for the improved agreement of the PlioMIP2 ensemble mean SSTs with reconstructions in the North Atlantic.
  •  
17.
  • Zhang, Zhongshi, et al. (författare)
  • Mid-Pliocene Atlantic Meridional Overturning Circulation simulated in PlioMIP2
  • 2021
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 17:1, s. 529-543
  • Tidskriftsartikel (refereegranskat)abstract
    • In the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2), coupled climate models have been used to simulate an interglacial climate during the mid-Piacenzian warm period (mPWP; 3.264 to 3.025 Ma). Here, we compare the Atlantic Meridional Overturning Circulation (AMOC), poleward ocean heat transport and sea surface warming in the Atlantic simulated with these models. In PlioMIP2, all models simulate an intensified mid-Pliocene AMOC. How- ever, there is no consistent response in the simulated Atlantic ocean heat transport nor in the depth of the Atlantic overturning cell. The models show a large spread in the simulated AMOC maximum, the Atlantic ocean heat transport and the surface warming in the North Atlantic. Although a few models simulate a surface warming of similar to 8-12 degrees C in the North Atlantic, similar to the reconstruction from Pliocene Research, Interpretation and Synoptic Mapping (PRISM) version 4, most models appear to underestimate this warming. The large model spread and model-data discrepancies in the PlioMIP2 ensemble do not support the hypothesis that an intensification of the AMOC, together with an increase in northward ocean heat transport, is the dominant mechanism for the mid-Pliocene warm climate over the North Atlantic.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-17 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy