SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Peltonen Jouko Professor) "

Search: WFRF:(Peltonen Jouko Professor)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Montibon, Elson, 1979- (author)
  • Modification of Paper into Conductive Substrate for Electronic Functions : Deposition, Characterization and Demonstration
  • 2011
  • Doctoral thesis (other academic/artistic)abstract
    • The thesis investigates the modification of paper into an ion- and electron-conductive material, and as a renewable material for electronic device. The study stretches from investigating the interaction between the cellulosic materials and the conducting polymer to demonstrating the performance of the conductive paper by printing the electronic structure on the surface of the conductive paper. Conducting materials such as conducting polymer, ionic liquids, and multi-wall carbon nanotubes were deposited into the fiber networks.In order to investigate the interaction between the conducting polymer and cellulosic material, the adsorption of the conducting polymer poly(3,4-ethylenedioxythiophene): poly(4-styrene sulfonate) (PEDOT:PSS) onto microcrystalline cellulose (MCC) was performed. Electroconductive papers were produced via dip coating and rod coating, and characterized. The Scanning Electron Microscopy (SEM) / Energy Dispersive Spectroscopy (EDS) images showed that the conducting polymer was deposited in the fiber and in fiber-fiber contact areas. The X-ray Photoelectron Spectroscopy (XPS) analysis of dip-coated paper samples showed PEDOT enrichment on the surface. The effects of fiber beating and paper formation, addition of organic solvents and pigments (TiO2, MWCNT), and calendering were investigated. Ionic paper was produced by depositing an ionic liquid into the commercial base paper. The dependence to temperature and relative humidity of the ionic conductivity was also investigated. In order to reduce the roughness and improve its printability, the ionic paper was surface-sized using different coating rods.  The bulk resistance increased with increasing surface sizing. The electrochemical performance of the ionic paper was confirmed by printing PEDOT:PSS on the surface. There was change in color of the polymer when a voltage was applied. It was demonstrated that the ionic paper is a good ionic conductor that can be used as component for a more compact electronic device construction.Conductive paper has a great potential to be a flexible substrate on which an electronic structure can be constructed. The conduction process in the modified paper is due to the density of charge carriers (ions and electrons), and their short range mobility in the material. The charge carrying is believed to be heterogeneous, involving many charged species as the paper material is chemically heterogeneous.
  •  
2.
  • Öhlund, Thomas, 1973- (author)
  • Coated Surfaces for Inkjet-Printed Conductors
  • 2012
  • Licentiate thesis (other academic/artistic)abstract
    • In this thesis, a number of commercially available paper substrates of various types are characterized and their characteristics related to the performance of inkjet-printed conductors using silver nanoparticle ink. The evaluated performance variables are electrical conductivity as well as the minimum achievable conductor width and the edge raggedness. It is shown that quick absorption of the ink carrier is beneficial for achieving well defined conductor geometry and high conductivity. Surface roughness with topography variations of sufficiently large amplitude and frequency is detrimental to print definition and conductivity. Porosity is another important factor, where the characteristic pore size is much more important than the total pore volume. A nearly ideal porous coating has large total pore volume but small characteristic pore size, preferably smaller than individual nanoparticles in the ink. Apparent surface energy is important for non-absorbing substrates but of limited importance for coatings with a high absorption rate.Additionally, a concept for improving the geometric definition of inkjet-printed conductors on nonporous films has been demonstrated. By coating the films with polymer–based coatings to provide a means of ink solvent removal, minimum conductor width were reduced a factor 2 or more.Intimately connected to the end performance of printed conductors is a well adapted sintering methodology. A comparative evaluation of a number of selective sintering methods has been performed on paper substrates with different heat tolerance. Pulsed high-power white light was found to be a good compromise between conductivity performance, reliability and production adaptability.The purpose of the work conducted in this thesis is to increase the knowledge base in how surface characteristics of papers and flexible films affect performance of printed nanoparticle structures. This would improve selection, adaption of, or manufacturing of such substrates to suit printed high conductivity patterns such as printed antennas for packaging.
  •  
3.
  • Johnson, Johanna, 1970- (author)
  • Aspects of Flexographic Print Quality and Relationship to some Printing Parameters
  • 2008
  • Doctoral thesis (other academic/artistic)abstract
    • Flexographic printing is a common printing method in the packaging field. The printing method is characterized primarily by the flexible printing plate and the low viscosity inks which make it suitable for use on almost any substrate. The object of this study was to obtain further knowledge of the some important mechanisms of flexographic printing and how they influence the print quality. The thesis deals with printing primarily on board and liner but also on newsprint with water-borne ink using a full-scale flexographic central impression (CI) printing press. Several printing trials have been performed with a focus on the chemical interaction between the ink and substrate and the physical contact between the ink-covered printing plate and the substrate. Multicolour printing exposes the substrate to water from the water-containing ink. The emphasis was to investigate the relation between print quality and water-uptake of the paper surface with heat and water. Printing trials was carried out on substrates possessing a hydrophobic, and also a rather hydrophilic surface using a regular commercial water-borne ink. The favorable effect which water or surfactant solution had on the hydrophobic substrate with regard to print mottle could depend on its surface compressibility in combination with the hydrophobic nature of its surface that could affect the wetting properties. Conventional printing involves physical contact between plate and ink and between ink and substrate. A method for measuring the dynamic nip pressure using thin load cells is presented. Print quality was influenced by the plate material. A correction procedure taking into account the size of the sensor was developed in order to estimate the maximum dynamic pressure in the printing nip. An attempt was made to identify essential mechanical and chemical parameters, and also geometrical properties of the plate that affected print quality. Laboratory printing trials were carried out and a multivariate analysis was applied for evaluation of print quality data. The impact of the plate properties on print quality was evident. The essential properties of the plate that influence print quality were the small-scale roughness and long-scale roughness.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view