SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Perego A.) "

Sökning: WFRF:(Perego A.)

  • Resultat 1-18 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aad, G., et al. (författare)
  • 2015
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Akkoyun, S., et al. (författare)
  • AGATA - Advanced GAmma Tracking Array
  • 2012
  • Ingår i: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. - : Elsevier BV. - 0168-9002 .- 0167-5087 .- 1872-9576. ; 668, s. 26-58
  • Tidskriftsartikel (refereegranskat)abstract
    • The Advanced GAmma Tracking Array (AGATA) is a European project to develop and operate the next generation γ-ray spectrometer. AGATA is based on the technique of γ-ray energy tracking in electrically segmented high-purity germanium crystals. This technique requires the accurate determination of the energy, time and position of every interaction as a γ ray deposits its energy within the detector volume. Reconstruction of the full interaction path results in a detector with very high efficiency and excellent spectral response. The realisation of γ-ray tracking and AGATA is a result of many technical advances. These include the development of encapsulated highly segmented germanium detectors assembled in a triple cluster detector cryostat, an electronics system with fast digital sampling and a data acquisition system to process the data at a high rate. The full characterisation of the crystals was measured and compared with detector- response simulations. This enabled pulse-shape analysis algorithms, to extract energy, time and position, to be employed. In addition, tracking algorithms for event reconstruction were developed. The first phase of AGATA is now complete and operational in its first physics campaign. In the future AGATA will be moved between laboratories in Europe and operated in a series of campaigns to take advantage of the different beams and facilities available to maximise its science output. The paper reviews all the achievements made in the AGATA project including all the necessary infrastructure to operate and support the spectrometer. © 2011 Elsevier B.V. All rights reserved.
  •  
3.
  • Ballan, M., et al. (författare)
  • Nuclear physics midterm plan at Legnaro National Laboratories (LNL)
  • 2023
  • Ingår i: European Physical Journal Plus. - 2190-5444. ; 138:8, s. 3-26
  • Tidskriftsartikel (refereegranskat)abstract
    • The next years will see the completion of the radioactive ion beam facility SPES (Selective Production of Exotic Species) and the upgrade of the accelerators complex at Istituto Nazionale di Fisica Nucleare – Legnaro National Laboratories (LNL) opening up new possibilities in the fields of nuclear structure, nuclear dynamics, nuclear astrophysics, and applications. The nuclear physics community has organised a workshop to discuss the new physics opportunities that will be possible in the near future by employing state-of-the-art detection systems. A detailed discussion of the outcome from the workshop is presented in this report.
  •  
4.
  • Ackley, K., et al. (författare)
  • Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger candidate S190814bv
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 643
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Gravitational wave (GW) astronomy has rapidly reached maturity, becoming a fundamental observing window for modern astrophysics. The coalescences of a few tens of black hole (BH) binaries have been detected, while the number of events possibly including a neutron star (NS) is still limited to a few. On 2019 August 14, the LIGO and Virgo interferometers detected a high-significance event labelled S190814bv. A preliminary analysis of the GW data suggests that the event was likely due to the merger of a compact binary system formed by a BH and a NS.Aims. In this paper, we present our extensive search campaign aimed at uncovering the potential optical and near infrared electromagnetic counterpart of S190814bv. We found no convincing electromagnetic counterpart in our data. We therefore use our non-detection to place limits on the properties of the putative outflows that could have been produced by the binary during and after the merger.Methods. Thanks to the three-detector observation of S190814bv, and given the characteristics of the signal, the LIGO and Virgo Collaborations delivered a relatively narrow localisation in low latency - a 50% (90%) credible area of 5 deg(2) (23 deg(2)) - despite the relatively large distance of 26752 Mpc. ElectromagNetic counterparts of GRAvitational wave sources at the VEry Large Telescope collaboration members carried out an intensive multi-epoch, multi-instrument observational campaign to identify the possible optical and near infrared counterpart of the event. In addition, the ATLAS, GOTO, GRAWITA-VST, Pan-STARRS, and VINROUGE projects also carried out a search on this event. In this paper, we describe the combined observational campaign of these groups.Results. Our observations allow us to place limits on the presence of any counterpart and discuss the implications for the kilonova (KN), which was possibly generated by this NS-BH merger, and for the strategy of future searches. The typical depth of our wide-field observations, which cover most of the projected sky localisation probability (up to 99.8%, depending on the night and filter considered), is r similar to 22 (resp. K similar to 21) in the optical (resp. near infrared). We reach deeper limits in a subset of our galaxy-targeted observations, which cover a total similar to 50% of the galaxy-mass-weighted localisation probability. Altogether, our observations allow us to exclude a KN with large ejecta mass M greater than or similar to 0.1 M-circle dot to a high (> 90%) confidence, and we can exclude much smaller masses in a sub-sample of our observations. This disfavours the tidal disruption of the neutron star during the merger.Conclusions. Despite the sensitive instruments involved in the campaign, given the distance of S190814bv, we could not reach sufficiently deep limits to constrain a KN comparable in luminosity to AT 2017gfo on a large fraction of the localisation probability. This suggests that future (likely common) events at a few hundred megaparsecs will be detected only by large facilities with both a high sensitivity and large field of view. Galaxy-targeted observations can reach the needed depth over a relevant portion of the localisation probability with a smaller investment of resources, but the number of galaxies to be targeted in order to get a fairly complete coverage is large, even in the case of a localisation as good as that of this event.
  •  
5.
  • Rossi, A., et al. (författare)
  • The Peculiar Short-duration GRB 200826A and Its Supernova
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 932:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Gamma-ray bursts (GRBs) are classified into long and short events. Long GRBs (LGRBs) are associated with the end states of very massive stars, while short GRBs (SGRBs) are linked to the merger of compact objects. GRB 200826A was a peculiar event, because by definition it was an SGRB, with a rest-frame duration of similar to 0.5 s. However, this event was energetic and soft, which is consistent with LGRBs. The relatively low redshift (z = 0.7486) motivated a comprehensive, multiwavelength follow-up campaign to characterize its host, search for a possible associated supernova (SN), and thus understand the origin of this burst. To this aim we obtained a combination of deep near-infrared (NIR) and optical imaging together with spectroscopy. Our analysis reveals an optical and NIR bump in the light curve whose luminosity and evolution are in agreement with several SNe associated to LGRBs. Analysis of the prompt GRB shows that this event follows the E-p,E-i-E-iso relation found for LGRBs. The host galaxy is a low-mass star-forming galaxy, typical of LGRBs, but with one of the highest star formation rates, especially with respect to its mass (log M-*/M-circle dot = 8.6, SFR similar to 4.0 M-circle dot yr(-1)). We conclude that GRB 200826A is a typical collapsar event in the low tail of the duration distribution of LGRBs. These findings support theoretical predictions that events produced by collapsars can be as short as 0.5 s in the host frame and further confirm that duration alone is not an efficient discriminator for the progenitor class of a GRB.
  •  
6.
  • Ghirlanda, G., et al. (författare)
  • Compact radio emission indicates a structured jet was produced by a binary neutron star merger
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 363:6430, s. 968-971
  • Tidskriftsartikel (refereegranskat)abstract
    • The binary neutron star merger event GW170817 was detected through both electromagnetic radiation and gravitational waves. Its afterglow emission may have been produced by either a narrow relativistic jet or an isotropic outflow. High-spatial-resolution measurements of the source size and displacement can discriminate between these scenarios. We present very-long-baseline interferometry observations, performed 207.4 days after the merger by using a global network of 32 radio telescopes. The apparent source size is constrained to be smaller than 2.5 milli-arc seconds at the 90% confidence level. This excludes the isotropic outflow scenario, which would have produced a larger apparent size, indicating that GW170817 produced a structured relativistic jet. Our rate calculations show that at least 10% of neutron star mergers produce such a jet.
  •  
7.
  • Bacca, S., et al. (författare)
  • Neutrino processes in partially degenerate neutron matter
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 758:1, s. 34-
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate neutrino processes for conditions reached in simulations of core-collapse supernovae. In regions where neutrino-matter interactions play an important role, matter is partially degenerate, and we extend earlier work that addressed the degenerate regime. We derive expressions for the spin structure factor in neutron matter, which is a key quantity required for evaluating rates of neutrino processes. We show that, for essentially all conditions encountered in the post-bounce phase of core-collapse supernovae, it is a very good approximation to calculate the spin relaxation rates in the nondegenerate limit. We calculate spin relaxation rates based on chiral effective field theory interactions and find that they are typically a factor of two smaller than those obtained using the standard one-pion-exchange interaction alone.
  •  
8.
  • Barack, Leor, et al. (författare)
  • Black holes, gravitational waves and fundamental physics : a roadmap
  • 2019
  • Ingår i: Classical and quantum gravity. - : IOP Publishing. - 0264-9381 .- 1361-6382. ; 36:14
  • Forskningsöversikt (refereegranskat)abstract
    • The grand challenges of contemporary fundamental physics dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress. This write-up is an initiative taken within the framework of the European Action on 'Black holes, Gravitational waves and Fundamental Physics'.
  •  
9.
  • Martin, D., et al. (författare)
  • NEUTRINO-DRIVEN WINDS IN THE AFTERMATH OF A NEUTRON STAR MERGER : NUCLEOSYNTHESIS AND ELECTROMAGNETIC TRANSIENTS
  • 2015
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 813:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a comprehensive nucleosynthesis study of the neutrino-driven wind in the aftermath of a binary neutron star merger. Our focus is the initial remnant phase when a massive central neutron star is present. Using tracers from a recent hydrodynamical simulation, we determine total masses and integrated abundances to characterize the composition of unbound matter. We find that the nucleosynthetic yields depend sensitively on both the life time of the massive neutron star and the polar angle. Matter in excess of up to 9 x 10(-3) M-circle dot becomes unbound until similar to 200 ms. Due to electron fractions of Y-e approximate to 0.2-0.4, mainly nuclei with mass numbers A < 130 are synthesized, complementing the yields from the earlier dynamic ejecta. Mixing scenarios with these two types of ejecta can explain the abundance pattern in r-process enriched metal-poor stars. Additionally, we calculate heating rates for the decay of the freshly produced radioactive isotopes. The resulting light curve peaks in the blue band after about 4 hr. Furthermore, high opacities due to heavy r-process nuclei in the dynamic ejecta lead to a second peak in the infrared after 3-4 days.
  •  
10.
  •  
11.
  •  
12.
  • Perego, A., et al. (författare)
  • Neutrino-driven winds from neutron star merger remnants
  • 2014
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 443:4, s. 3134-3156
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a detailed, three-dimensional hydrodynamic study of the neutrino-driven winds emerging from the remnant of a neutron star merger. Our simulations are performed with the Newtonian, Eulerian code FISH, augmented by a detailed, spectral neutrino leakage scheme that accounts for neutrino absorption. Consistent with earlier two-dimensional studies, a strong baryonic wind is blown out along the original binary rotation axis within approximate to 100 ms. From this model, we compute a lower limit on the expelled mass of 3.5 x 10(-3) M-circle dot, relevant for heavy element nucleosynthesis. Because of stronger neutrino irradiation, the polar regions show substantially larger electron fractions than those at lower latitudes. The polar ejecta produce interesting r-process contributions from A approximate to 80 to about 130, while the more neutron-rich, lower latitude parts produce elements up to the third r-process peak near A approximate to 195. We calculate the properties of electromagnetic transients powered by the radioactivity in the wind, in addition to the 'macronova' transient stemming from the dynamic ejecta. The polar regions produce ultraviolet/optical transients reaching luminosities up to 10(41) erg s(-1), which peak around 1 d in optical and 0.3 d in bolometric luminosity. The lower latitude regions, due to their contamination with high-opacity heavy elements, produce dimmer and more red signals, peaking after similar to 2 d in optical and infrared.
  •  
13.
  •  
14.
  • Fronzek, Stefan, et al. (författare)
  • Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change
  • 2018
  • Ingår i: Agricultural Systems. - : Elsevier BV. - 0308-521X. ; 159, s. 209-224
  • Tidskriftsartikel (refereegranskat)abstract
    • Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (-2 to +9°C) and precipitation (-50 to +50%). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses.The model ensemble was used to simulate yields of winter and spring wheat at four sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern.The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description.Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the application of the EDA and SDA approaches revealed their capability to distinguish: (i) stronger yield responses to precipitation for winter wheat than spring wheat; (ii) differing strengths of response to climate changes for years with anomalous weather conditions compared to period-average conditions; (iii) the influence of site conditions on yield patterns; (iv) similarities in IRS patterns among models with related genealogy; (v) similarities in IRS patterns for models with simpler process descriptions of root growth and water uptake compared to those with more complex descriptions; and (vi) a closer correspondence of IRS patterns in models using partitioning schemes to represent yield formation than in those using a harvest index.Such results can inform future crop modelling studies that seek to exploit the diversity of multi-model ensembles, by distinguishing ensemble members that span a wide range of responses as well as those that display implausible behaviour or strong mutual similarities.
  •  
15.
  • Gizzi, Davide, 1992-, et al. (författare)
  • A multidimensional implementation of the Advanced Spectral neutrino Leakage scheme
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 490:3, s. 4211-4229
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a new, multidimensional implementation of the Advanced Spectral Leakage (ASL) scheme with the purpose of modelling neutrino–matter interactions in neutron star mergers. A major challenge is the neutrino absorption in the semitransparent regime, which is responsible for driving winds from the merger remnant. The composition of such winds is crucial in the understanding of the electromagnetic emission in the recently observed macronova following GW170817. Compared to the original version, we introduce an optical-depth-dependent flux factor to model the average angle of neutrino propagation, and a modulation that accounts for flux anisotropies in non-spherical geometries. We scrutinize our approach by first comparing the new scheme against the original one for a spherically symmetric core-collapse supernova snapshot, both in 1D and in 3D, and additionally against a two-moment (M1) scheme as implemented in 1D into the code GR1D. The luminosities and mean energies agree to a few per cents in most tests. Finally, for the case of a binary merger remnant snapshot we compare the new ASL scheme with the M1 scheme that is implemented in the Eulerian adaptive mesh refinement code FLASH. We find that the neutrino absorption distribution in the semitransparent regime is overall well reproduced. Both approaches agree to within 15 per cent for the average energies and to better than ∼ 35 per cent in the total luminosities.
  •  
16.
  • Gizzi, Davide, et al. (författare)
  • Extension of the Advanced Spectral Leakage scheme for neutron star merger simulations
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 505:2, s. 2575-2593
  • Tidskriftsartikel (refereegranskat)abstract
    • We calibrate a neutrino transport approximation, called Advanced Spectral Leakage (ASL), with the purpose of modelling neutrino-driven winds in neutron star mergers. Based on a number of snapshots, we gauge the ASL parameters by comparing against both the two-moment (M1) scheme implemented in the FLASH code and the Monte Carlo neutrino code SEDONU. The ASL scheme contains three parameters, the least robust of which results to be a blocking parameter for electron neutrinos and antineutrinos. The parameter steering the angular distribution of neutrino heating is recalibrated compared to the earlier work. We also present a new, fast and mesh-free algorithm for calculating spectral optical depths, which, when using smoothed-particle hydrodynamics (SPH), makes the neutrino transport completely particle-based. We estimate a speed-up of a factor of ≳100 in the optical depth calculation when comparing to a grid-based approach. In the suggested calibration we recover luminosities and mean energies within 25 per cent. A comparison of the rates of change of internal energy and electron fraction in the neutrino-driven wind suggests comparable accuracies of ASL and M1, but a higher computational efficiency of the ASL scheme. We estimate that the ratio between the CPU hours spent on the ASL neutrino scheme and those spent on the hydrodynamics is ≲0.8 per time-step when considering the SPH code MAGMA2 as source code for the Lagrangian hydrodynamics, to be compared with a factor of 10 from the M1 in FLASH.
  •  
17.
  • Kashyap, Rahul, et al. (författare)
  • Numerical relativity simulations of prompt collapse mergers : Threshold mass and phenomenological constraints on neutron star properties after GW170817
  • 2022
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 105:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We determine the threshold mass for prompt (no bounce) black hole formation in equal-mass neutron star (NS) mergers using a new set of 227 numerical relativity simulations. We consider 23 phenomenological and microphysical finite-temperature equations of state (EOS), including models with hyperons and first-order phase transitions to deconfined quarks. We confirm the existence of EOS-insensitive relations between the threshold mass, binary tidal parameter at the threshold (Λth), maximum mass of nonrotating NSs, and radii of reference mass NSs. We combine the EOS-insensitive relations, phenomenological constraints on NS properties, and observational data from GW170817 to derive an improved lower limit on radii of maximum mass and a 1.6  M⊙ NS of 9.81 and 10.90 km, respectively. We also constrain the radius and quadrupolar tidal deformability (Λ) of a 1.4  M⊙ NS to be larger than 10.74 km and 172, respectively. We consider uncertainties in all independent parameters—fitting coefficients as well as GW170817 masses while reporting the range of radii constraints. We discuss an approach to constrain the upper as well as lower limit of NS maximum mass using future binary NS detections and their identification as prompt or delayed collapse. With future observations, it will be possible to derive even tighter constraints on the properties of matter at and above nuclear density using the method proposed in this work.
  •  
18.
  • Nativi, Lorenzo, et al. (författare)
  • Can jets make the radioactively powered emission from neutron star mergers bluer?
  • 2020
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 500:2, s. 1772-1783
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutron star mergers eject neutron-rich matter in which heavy elements are synthesized. The decay of these freshly synthesized elements powers electromagnetic transients ('macronovae' or 'kilonovae') whose luminosity and colour strongly depend on their nuclear composition. If the ejecta are very neutron-rich (electron fraction Ye < 0.25), they contain fair amounts of lanthanides and actinides that have large opacities and therefore efficiently trap the radiation inside the ejecta so that the emission peaks in the red part of the spectrum. Even small amounts of this high-opacity material can obscure emission from lower lying material and therefore act as a 'lanthanide curtain'. Here, we investigate how a relativistic jet that punches through the ejecta can potentially push away a significant fraction of the high opacity material before the macronova begins to shine. We use the results of detailed neutrino-driven wind studies as initial conditions and explore with 3D special relativistic hydrodynamic simulations how jets are propagating through these winds. Subsequently, we perform Monte Carlo radiative transfer calculations to explore the resulting macronova emission. We find that the hole punched by the jet makes the macronova brighter and bluer for on-axis observers during the first few days of emission, and that more powerful jets have larger impacts on the macronova.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-18 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy