SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Persson S. E.) "

Sökning: WFRF:(Persson S. E.)

  • Resultat 1-25 av 482
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Forrest, ARR, et al. (författare)
  • A promoter-level mammalian expression atlas
  • 2014
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 507:7493, s. 462-
  • Tidskriftsartikel (refereegranskat)
  •  
5.
  • Hudson, Lawrence N, et al. (författare)
  • The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project
  • 2017
  • Ingår i: Ecology and Evolution. - : John Wiley & Sons. - 2045-7758. ; 7:1, s. 145-188
  • Tidskriftsartikel (refereegranskat)abstract
    • The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.
  •  
6.
  •  
7.
  • Barragan, O., et al. (författare)
  • The young HD 73583 (TOI-560) planetary system: two 10-M-circle plus mini-Neptunes transiting a 500-Myr-old, bright, and active K dwarf
  • 2022
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 514:2, s. 1606-1627
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the discovery and characterization of two transiting planets observed by TESS in the light curves of the young and bright (V = 9.67) star HD73583 (TOI-560). We perform an intensive spectroscopic and photometric space- and ground-based follow-up in order to confirm and characterize the system. We found that HD73583 is a young (similar to 500 Myr) active star with a rotational period of 12.08 +/- 0.11 d, and a mass and radius of 0.73 +/- 0.02 M-circle dot and 0.65 +/- 0.02 R-circle dot, respectively. HD 73583 b (P-b = 6.3980420(-0.0000062)(+0.0000067 )d) has a mass and radius of 10.2(-3.1)(+3.4) M-circle plus and 2.79 +/- 0.10 R-circle plus, respectively, which gives a density of 2.58(-0.81)(+0.95) g cm(-3). HD 73583 c (P-c = 18.87974(-0.00074)(+0.00086) d) has a mass and radius of 9.7(-1.7)(+1.8) M-circle plus and 2.39(-0.09)(+0.10) R-circle plus, respectively, which translates to a density of 3.88(-0.80)(+0.91) g cm(-3). Both planets are consistent with worlds made of a solid core surrounded by a volatile envelope. Because of their youth and host star brightness, they both are excellent candidates to perform transmission spectroscopy studies. We expect ongoing atmospheric mass-loss for both planets caused by stellar irradiation. We estimate that the detection of evaporating signatures on H and He would be challenging, but doable with present and future instruments.
  •  
8.
  • Georgieva, Iskra, 1987, et al. (författare)
  • Hot planets around cool stars - two short-period mini-Neptunes transiting the late K-dwarf TOI-1260
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 505:4, s. 4684-4701
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the discovery and characterization of two sub-Neptunes in close orbits, as well as a tentative outer planet of a similar size, orbiting TOI-1260 - a low metallicity K6V dwarf star. Photometry from Transiting Exoplanet Survey Satellite(TESS) yields radii of R-b = 2.33 +/- 0.10 and R-c = 2.82 +/- 0.15 R-circle plus, and periods of 3.13 and 7.49 d for TOI-1260b and TOI-1260c, respectively. We combined the TESS data with a series of ground-based follow-up observations to characterize the planetary system. From HARPS-N high-precision radial velocities we obtain M-b = and M-c = M-circle plus. The star is moderately active with a complex activity pattern, which necessitated the use of Gaussian process regression for both the light-curve detrending and the radial velocity modelling, in the latter case guided by suitable activity indicators. We successfully disentangle the stellar-induced signal from the planetary signals, underlining the importance and usefulness of the Gaussian process approach. We test the system's stability against atmospheric photoevaporation and find that the TOI-1260 planets are classic examples of the structure and composition ambiguity typical for the 2-3 R-circle plus range.
  •  
9.
  • Hoyer, S., et al. (författare)
  • TOI-220b: a warm sub-Neptune discovered by TESS
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 505:3, s. 3361-3379
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we report the discovery of TOI-220b, a new sub-Neptune detected by the Transiting Exoplanet Survey Satellite (TESS) and confirmed by radial velocity follow-up observations with the HARPS spectrograph. Based on the combined analysis of TESS transit photometry and high precision radial velocity measurements, we estimate a planetary mass of 13.8 +/- 1.0M(circle plus) and radius of 3.03 +/- 0.15R(circle plus), implying a bulk density of 2.73 +/- 0.47. TOI-220b orbits a relative bright (V=10.4) and old (10.1 +/- 1.4Gyr) K dwarf star with a period of similar to 10.69d. Thus, TOI-220b is a new warm sub-Neptune with very precise mass and radius determinations. A Bayesian analysis of the TOI-220b internal structure indicates that due to the strong irradiation it receives, the low density of this planet could be explained with a steam atmosphere in radiative-convective equilibrium and a supercritical water layer on top of a differentiated interior made of a silicate mantle and a small iron core.
  •  
10.
  • Leleu, A., et al. (författare)
  • Six transiting planets and a chain of Laplace resonances in TOI-178
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 649
  • Tidskriftsartikel (refereegranskat)abstract
    • Determining the architecture of multi-planetary systems is one of the cornerstones of understanding planet formation and evolution. Resonant systems are especially important as the fragility of their orbital configuration ensures that no significant scattering or collisional event has taken place since the earliest formation phase when the parent protoplanetary disc was still present. In this context, TOI-178 has been the subject of particular attention since the first TESS observations hinted at the possible presence of a near 2:3:3 resonant chain. Here we report the results of observations from CHEOPS, ESPRESSO, NGTS, and SPECULOOS with the aim of deciphering the peculiar orbital architecture of the system. We show that TOI-178 harbours at least six planets in the super-Earth to mini-Neptune regimes, with radii ranging from 1.152 to 2.87 Earth radii and periods of 1.91, 3.24, 6.56, 9.96, 15.23, and 20.71 days. All planets but the innermost one form a 2:4:6:9:12 chain of Laplace resonances, and the planetary densities show important variations from planet to planet, jumping from 1.02 to 0.177 times the Earth's density between planets c and d. Using Bayesian interior structure retrieval models, we show that the amount of gas in the planets does not vary in a monotonous way, contrary to what one would expect from simple formation and evolution models and unlike other known systems in a chain of Laplace resonances. The brightness of TOI-178 (H = 8.76 mag, J = 9.37 mag, V = 11.95 mag) allows for a precise characterisation of its orbital architecture as well as of the physical nature of the six presently known transiting planets it harbours. The peculiar orbital configuration and the diversity in average density among the planets in the system will enable the study of interior planetary structures and atmospheric evolution, providing important clues on the formation of super-Earths and mini-Neptunes. -0.070 -0.13 -0.23 -0.061 +0.073 +0.14 +0.28 +0.055
  •  
11.
  • Knudstrup, E., et al. (författare)
  • Radial velocity confirmation of a hot super-Neptune discovered by TESS with a warm Saturn-mass companion
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 519:4, s. 5637-5655
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery and confirmation of the planetary system TOI-1288. This late G dwarf harbours two planets: TOI-1288 b and TOI-1288 c. We combine TESS space-borne and ground-based transit photometry with HARPS-N and HIRES high-precision Doppler measurements, which we use to constrain the masses of both planets in the system and the radius of planet b. TOI-1288 b has a period of 2.699835(-0.000003)(+0.000004) d, a radius of 5.24 +/- 0.09 R-circle plus, and a mass of 42 +/- 3 M-circle plus, making this planet a hot transiting super-Neptune situated right in the Neptunian desert. This desert refers to a paucity of Neptune-sized planets on short period orbits. Our 2.4-yr-long Doppler monitoring of TOI-1288 revealed the presence of a Saturn-mass planet on a moderately eccentric orbit (0.13(-0.09)(+0.07)) with a minimum mass of 84 +/- 7 M-circle plus and a period of 443(-13)(+11) d. The five sectors worth of TESS data do not cover our expected mid-transit time for TOI-1288 c, and we do not detect a transit for this planet in these sectors.
  •  
12.
  • Bluhm, P., et al. (författare)
  • Precise mass and radius of a transiting super-Earth planet orbiting the M dwarf TOI-1235: a planet in the radius gap?
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 639
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the confirmation of a transiting planet around the bright weakly active M0.5 V star TOI-1235 (TYC 4384-1735-1, V ≈ 11.5 mag), whose transit signal was detected in the photometric time series of sectors 14, 20, and 21 of the TESS space mission. We confirm the planetary nature of the transit signal, which has a period of 3.44 d, by using precise RV measurements with the CARMENES, HARPS-N, and iSHELL spectrographs, supplemented by high-resolution imaging and ground-based photometry. A comparison of the properties derived for TOI-1235 b with theoretical models reveals that the planet has a rocky composition, with a bulk density slightly higher than that of Earth. In particular, we measure a mass of Mp = 5.9 ± 0.6 M⊕ and a radius of Rp = 1.69 ± 0.08 R⊕, which together result in a density of ρp = 6.7- 1.1+ 1.3 g cm-3. When compared with other well-characterized exoplanetary systems, the particular combination of planetary radius and mass places our discovery in the radius gap, which is a transition region between rocky planets and planets with significant atmospheric envelopes. A few examples of planets occupying the radius gap are known to date. While the exact location of the radius gap for M dwarfs is still a matter of debate, our results constrain it to be located at around 1.7 R⊕ or larger at the insolation levels received by TOI-1235 b (~60 S⊕). This makes it an extremely interesting object for further studies of planet formation and atmospheric evolution.
  •  
13.
  • Esposito, M., et al. (författare)
  • HD 219666 b: a hot-Neptune from TESS Sector 1
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 623:623
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the confirmation and mass determination of a transiting planet orbiting the old and inactive G7 dwarf star HD219666 (M-star = 0.92 +/- 0.03 M-circle dot, R-star = 1.03 +/- 0.03 R-circle dot, tau(star) = 10 +/- 2 Gyr). With a mass of M-b = 16.6 +/- 1.3 M-circle plus, a radius of R-b = 4.71 +/- 0.17 R-circle plus, and an orbital period of P-orb similar or equal to 6 days, HD219666 b is a new member of a rare class of exoplanets: the hot-Neptunes. The Transiting Exoplanet Survey Satellite (TESS) observed HD219666 (also known as TOI-118) in its Sector 1 and the light curve shows four transit-like events, equally spaced in time. We confirmed the planetary nature of the candidate by gathering precise radial-velocity measurements with the High Accuracy Radial velocity Planet Searcher (HARPS) at ESO 3.6 m. We used the co-added HARPS spectrum to derive the host star fundamental parameters (T-eff = 5527 +/- 65 K, log g(star) = 4.40 +/- 0.11 (cgs), [Fe/H] = 0.04 +/- 0.04 dex, log R-HK' = -5.07 +/- 0.03), as well as the abundances of many volatile and refractory elements. The host star brightness (V = 9.9) makes it suitable for further characterisation by means of in-transit spectroscopy. The determination of the planet orbital obliquity, along with the atmospheric metal-to-hydrogen content and thermal structure could provide us with important clues on the formation mechanisms of this class of objects.
  •  
14.
  • Nielsen, L. D., et al. (författare)
  • Mass determinations of the three mini-Neptunes transiting TOI-125
  • 2020
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 492:4, s. 5399-5412
  • Tidskriftsartikel (refereegranskat)abstract
    • The Transiting Exoplanet Survey Satellite, TESS, is currently carrying out an all-sky search for small planets transiting bright stars. In the first year of the TESS survey, a steady progress was made in achieving the mission's primary science goal of establishing bulk densities for 50 planets smaller than Neptune. During that year, the TESS's observations were focused on the southern ecliptic hemisphere, resulting in the discovery of three mini-Neptunes orbiting the star T01-125, a V = 11,0 KO dwarf. We present intensive HARPS radial velocity observations, yielding precise mass measurements for TO1-125b, TOI-125c, and TOI-125d. TOI-125b has an orbital period of 4,65 d, a radius of 2,726 + 0,075 RE, a mass of 9,50 0,88 ME, and is near the 2:1 mean motion resonance with TOI-125c at 9.15 d. TOI-125c has a similar radius of 2,759 0.10 RE and a mass of 6,63 + 0,99 ME, being the puffiest of the three planets. T01-125d has an orbital period of 19,98 d and a radius of 2.93 + 0,17 RE and mass 13,6 1,2 ME, For T01-125b and d, we find unusual high eccentricities of 0.19 0.04 and 0.17+(c):(!,(, respectively. Our analysis also provides upper mass limits for the two low-SNR planet candidates in the system; for T01-125.04 (Rp = 1.36 RE, P = 0.53 d), we find a 2a upper mass limit of 1.6 ME, whereas T01-125.05 (RP = 4.2-'2E44 RE, P = 13.28 d) is unlikely a viable planet candidate with an upper mass limit of 2.7 ME. We discuss the internal structure of the three confirmed planets, as well as dynamical stability and system architecture for this intriguing exoplanet system.
  •  
15.
  • Van Eylen, Vincent, et al. (författare)
  • Masses and compositions of three small planets orbiting the nearby M dwarf L231-32 (TOI-270) and the M dwarf radius valley
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 507:2, s. 2154-2173
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on precise Doppler measurements of L231-32 (TOI-270), a nearby M dwarf (d = 22 pc, M = 0.39 M, R = 0.38 R), which hosts three transiting planets that were recently discovered using data from the Transiting Exoplanet Survey Satellite (TESS). The three planets are 1.2, 2.4, and 2.1 times the size of Earth and have orbital periods of 3.4, 5.7, and 11.4 d. We obtained 29 high-resolution optical spectra with the newly commissioned Echelle Spectrograph for Rocky Exoplanet and Stable Spectroscopic Observations (ESPRESSO) and 58 spectra using the High Accuracy Radial velocity Planet Searcher (HARPS). From these observations, we find the masses of the planets to be 1.58 ± 0.26, 6.15 ± 0.37, and 4.78 ± 0.43 M, respectively. The combination of radius and mass measurements suggests that the innermost planet has a rocky composition similar to that of Earth, while the outer two planets have lower densities. Thus, the inner planet and the outer planets are on opposite sides of the 'radius valley'-a region in the radius-period diagram with relatively few members-which has been interpreted as a consequence of atmospheric photoevaporation. We place these findings into the context of other small close-in planets orbiting M dwarf stars, and use support vector machines to determine the location and slope of the M dwarf (Teff < 4000 K) radius valley as a function of orbital period. We compare the location of the M dwarf radius valley to the radius valley observed for FGK stars, and find that its location is a good match to photoevaporation and core-powered mass-loss models. Finally, we show that planets below the M dwarf radius valley have compositions consistent with stripped rocky cores, whereas most planets above have a lower density consistent with the presence of a H-He atmosphere.
  •  
16.
  • Cabrera, J., et al. (författare)
  • The planetary system around HD 190622 (TOI-1054): Measuring the gas content of low-mass planets orbiting F-stars
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 675
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Giant planets are known to dominate the long-term stability of planetary systems due to their prevailing gravitational interactions, but they are also thought to play an important role in planet formation. Observational constraints improve our understanding of planetary formation processes such as the delivery of volatile-rich planetesimals from beyond the ice line into the inner planetary system. Additional constraints may come from studies of the atmosphere, but almost all such studies of the atmosphere investigate the detection of certain species, and abundances are not routinely quantitatively measured. Aims. Accurate measurements of planetary bulk parameters-that is, mass and density-provide constraints on the inner structure and chemical composition of transiting planets. This information provides insight into properties such as the amounts of volatile species, which in turn can be related to formation and evolution processes. Methods. The Transiting Exoplanet Survey Satellite (TESS) reported a planetary candidate around HD 190622 (TOI-1054), which was subsequently validated and found to merit further characterization with photometric and spectroscopic facilities. The KESPRINT collaboration used data from the High Accuracy Radial Velocity Planet Searcher (HARPS) to independently confirm the planetary candidate, securing its mass, and revealing the presence of an outer giant planet in the system. The CHEOPS consortium invested telescope time in the transiting target in order to reduce the uncertainty on the radius, improving the characterization of the planet. Results. We present the discovery and characterization of the planetary system around HD 190622 (TOI-1054). This system hosts one transiting planet, which is smaller than Neptune (3.087-0.053+0.058REarth, 7.7 ± 1.0 MEarth) but has a similar bulk density (1.43 ± 0.21 g cm-3) and an orbital period of 16 days; and a giant planet, not known to be transiting, with a minimum mass of 227.0 ± 6.7 MEarth in an orbit with a period of 315 days. Conclusions. Our measurements constrain the structure and composition of the transiting planet. HD 190622b has singular properties among the known population of transiting planets, which we discuss in detail. Among the sub-Neptune-sized planets known today, this planet stands out because of its large gas content.
  •  
17.
  • Beral, V, et al. (författare)
  • Alcohol, tobacco and breast cancer - collaborative reanalysis of individual data from 53 epidemiological studies, including 58515 women with breast cancer and 95067 women without the disease
  • 2002
  • Ingår i: British Journal of Cancer. - : Springer Science and Business Media LLC. - 1532-1827 .- 0007-0920. ; 87, s. 1234-45
  • Tidskriftsartikel (refereegranskat)abstract
    • Alcohol and tobacco consumption are closely correlated and published results on their association with breast cancer have not always allowed adequately for confounding between these exposures. Over 80% of the relevant information worldwide on alcohol and tobacco consumption and breast cancer were collated, checked and analysed centrally. Analyses included 58515 women with invasive breast cancer and 95067 controls from 53 studies. Relative risks of breast cancer were estimated, after stratifying by study, age, parity and, where appropriate, women's age when their first child was born and consumption of alcohol and tobacco. The average consumption of alcohol reported by controls from developed countries was 6.0 g per day, i.e. about half a unit/drink of alcohol per day, and was greater in ever-smokers than never-smokers, (8.4 g per day and 5.0 g per day, respectively). Compared with women who reported drinking no alcohol, the relative risk of breast cancer was 1.32 (1.19 - 1.45, P < 0.00001) for an intake of 35 - 44 g per day alcohol, and 1.46 (1.33 - 1.61, P < 0.00001) for greater than or equal to 45 g per day alcohol. The relative risk of breast cancer increased by 7.1% (95% CI 5.5-8.7%; P<0.00001) for each additional 10 g per day intake of alcohol, i.e. for each extra unit or drink of alcohol consumed on a daily basis. This increase was the same in ever-smokers and never-smokers (7.1 % per 10 g per day, P < 0.00001, in each group). By contrast, the relationship between smoking and breast cancer was substantially confounded by the effect of alcohol. When analyses were restricted to 22 255 women with breast cancer and 40 832 controls who reported drinking no alcohol, smoking was not associated with breast cancer (compared to never-smokers, relative risk for ever-smokers= 1.03, 95% CI 0.98 - 1.07, and for current smokers=0.99, 0.92 - 1.05). The results for alcohol and for tobacco did not vary substantially across studies, study designs, or according to 15 personal characteristics of the women; nor were the findings materially confounded by any of these factors. If the observed relationship for alcohol is causal, these results suggest that about 4% of the breast cancers in developed countries are attributable to alcohol. In developing countries, where alcohol consumption among controls averaged only 0.4 g per day, alcohol would have a negligible effect on the incidence of breast cancer. In conclusion, smoking has little or no independent effect on the risk of developing breast cancer; the effect of alcohol on breast cancer needs to be interpreted in the context of its beneficial effects, in moderation, on cardiovascular disease and its harmful effects on cirrhosis and cancers of the mouth, larynx, oesophagus and liver. (C) 2002 Cancer Research UK.
  •  
18.
  • Hsiao, E. Y., et al. (författare)
  • Carnegie Supernova Project-II : The Near-infrared Spectroscopy Program
  • 2019
  • Ingår i: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 131:995
  • Tidskriftsartikel (refereegranskat)abstract
    • Shifting the focus of Type Ia supernova (SN Ia) cosmology to the near infrared (NIR) is a promising way to significantly reduce the systematic errors, as the strategy minimizes our reliance on the empirical width-luminosity relation and uncertain dust laws. Observations in the NIR are also crucial for our understanding of the origins and evolution of these events, further improving their cosmological utility. Any future experiments in the rest-frame NIR will require knowledge of the SN Ia NIR spectroscopic diversity, which is currently based on a small sample of observed spectra. Along with the accompanying paper, Phillips et al., we introduce the Carnegie Supernova Project-II (CSP-II), to follow-up nearby SNe Ia in both the optical and the NIR. In particular, this paper focuses on the CSP-II NIR spectroscopy program, describing the survey strategy, instrumental setups, data reduction, sample characteristics, and future analyses on the data set. In collaboration with the Harvard-Smithsonian Center for Astrophysics (CfA) Supernova Group, we obtained 661 NIR spectra of 157 SNe Ia. Within this sample, 451 NIR spectra of 90 SNe Ia have corresponding CSP-II follow-up light curves. Such a sample will allow detailed studies of the NIR spectroscopic properties of SNe Ia, providing a different perspective on the properties of the unburned material; the radioactive and stable nickel produced; progenitor magnetic fields; and searches for possible signatures of companion stars.
  •  
19.
  • Fridlund, Malcolm, 1952, et al. (författare)
  • The TOI-763 system: Sub-Neptunes orbiting a Sun-like star
  • 2020
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 498:3, s. 4503-4517
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of a planetary system orbiting TOI-763(aka CD-39 7945), a V = 10.2, high proper motion G-type dwarf star that was photometrically monitored by the TESS space mission in Sector 10. We obtain and model the stellar spectrum and find an object slightly smaller than the Sun, and somewhat older, but with a similar metallicity. Two planet candidates were found in the light curve to be transiting the star. Combining TESS transit photometry with HARPS high-precision radial velocity (RV) follow-up measurements confirm the planetary nature of these transit signals. We determine masses, radii, and bulk densities of these two planets. A third planet candidate was discovered serendipitously in the RV data. The inner transiting planet, TOI-763 b, has an orbital period of Pb = 5.6 d, a mass of Mb = 9.8 ± 0.8 M⊕, and a radius of Rb = 2.37 ± 0.10 R⊕. The second transiting planet, TOI-763 c, has an orbital period of Pc = 12.3 d, a mass of Mc = 9.3 ± 1.0 M⊕, and a radius of Rc = 2.87 ± 0.11 R⊕. We find the outermost planet candidate to orbit the star with a period of ∼48 d. If confirmed as a planet, it would have a minimum mass of Md = 9.5 ± 1.6 M⊕. We investigated the TESS light curve in order to search for a mono transit by planet d without success. We discuss the importance and implications of this planetary system in terms of the geometrical arrangements of planets orbiting G-type stars.
  •  
20.
  • Hsiao, E. Y., et al. (författare)
  • Strong near-infrared carbon in the Type Ia supernova iPTF13ebh
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 578
  • Tidskriftsartikel (refereegranskat)abstract
    • We present near-infrared (NIR) time-series spectroscopy, as well as complementary ultraviolet (UV), optical, and NIR data, of the Type Ia supernova (SN Ia) iPTF13ebh, which was discovered within two days from the estimated time of explosion. The first NIR spectrum was taken merely 2 : 3 days after explosion and may be the earliest NIR spectrum yet obtained of a SN Ia. The most striking features in the spectrum are several NIR C I lines, and the C I lambda 1.0693 mu m line is the strongest ever observed in a SN Ia. Interestingly, no strong optical C II counterparts were found, even though the optical spectroscopic time series began early and is densely cadenced. Except at the very early epochs, within a few days from the time of explosion, we show that the strong NIR C I compared to the weaker optical C II appears to be general in SNe Ia. iPTF13ebh is a fast decliner with Delta m(15)(B) = 1.79 +/- 0.01, and its absolute magnitude obeys the linear part of the width-luminosity relation. It is therefore categorized as a transitional event, on the fast-declining end of normal SNe Ia as opposed to subluminous/91bg-like objects. iPTF13ebh shows NIR spectroscopic properties that are distinct from both the normal and subluminous/91bg-like classes, bridging the observed characteristics of the two classes. These NIR observations suggest that composition and density of the inner core are similar to that of 91bg-like events, and that it has a deep-reaching carbon burning layer that is not observed in more slowly declining SNe Ia. There is also a substantial difference between the explosion times inferred from the early-time light curve and the velocity evolution of the Si II lambda 0.6355 mu m line, implying a long dark phase of similar to 4 days.
  •  
21.
  • Korth, J., et al. (författare)
  • TOI-1130: A photodynamical analysis of a hot Jupiter in resonance with an inner low-mass planet
  • 2023
  • Ingår i: Astronomy & Astrophysics. - 1432-0746 .- 0004-6361. ; 675
  • Tidskriftsartikel (refereegranskat)abstract
    • The TOI-1130 is a known planetary system around a K-dwarf consisting of a gas giant planet, TOI-1130 c on an 8.4-day orbit that is accompanied by an inner Neptune-sized planet, TOI-1130 b, with an orbital period of 4.1 days. We collected precise radial velocity (RV) measurements of TOI-1130 with the HARPS and PFS spectrographs as part of our ongoing RV follow-up program. We performed a photodynamical modeling of the HARPS and PFS RVs, along with transit photometry from the Transiting Exoplanet Survey Satellite (TESS) and the TESS Follow-up Observing Program (TFOP). We determined the planet masses and radii of TOI-1130 b and TOI-1130 c to be Mb = 19.28 ± 0.97M⊕ and Rb = 3.56 ± 0.13 R⊕, and Mc = 325.59 ± 5.59M⊕ and Rc = 13.32−1.41+1.55 R⊕, respectively. We have spectroscopically confirmed the existence of TOI-1130 b, which had previously only been validated. We find that the two planets have orbits with small eccentricities in a 2:1 resonant configuration. This is the first known system with a hot Jupiter and an inner lower mass planet locked in a mean-motion resonance. TOI-1130 belongs to the small, yet growing population of hot Jupiters with an inner low-mass planet that poses a challenge to the pathway scenario for hot Jupiter formation. We also detected a linear RV trend that is possibly due to the presence of an outer massive companion.
  •  
22.
  • Lam, K. W.F., et al. (författare)
  • GJ 367b: A dense, ultrashort-period sub-Earth planet transiting a nearby red dwarf star
  • 2021
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 374:6572, s. 1271-1275
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultrashort-period (USP) exoplanets have orbital periods shorter than 1 day. Precise masses and radii of USP exoplanets could provide constraints on their unknown formation and evolution processes. We report the detection and characterization of the USP planet GJ 367b using high-precision photometry and radial velocity observations. GJ 367b orbits a bright (V-band magnitude of 10.2), nearby, and red (M-type) dwarf star every 7.7 hours. GJ 367b has a radius of 0.718 ± 0.054 Earth-radii and a mass of 0.546 ± 0.078 Earth-masses, making it a sub-Earth planet. The corresponding bulk density is 8.106 ± 2.165 grams per cubic centimeter—close to that of iron. An interior structure model predicts that the planet has an iron core radius fraction of 86 ± 5%, similar to that of Mercury’s interior.
  •  
23.
  • Lillo-Box, J., et al. (författare)
  • TOI-969: a late-K dwarf with a hot mini-Neptune in the desert and an eccentric cold Jupiter
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 669
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The current architecture of a given multi-planetary system is a key fingerprint of its past formation and dynamical evolution history. Long-term follow-up observations are key to complete their picture. Aims. In this paper, we focus on the confirmation and characterization of the components of the TOI-969 planetary system, where TESS detected a Neptune-size planet candidate in a very close-in orbit around a late K-dwarf star. Methods. We use a set of precise radial velocity observations from HARPS, PFS, and CORALIE instruments covering more than two years in combination with the TESS photometric light curve and other ground-based follow-up observations to confirm and characterize the components of this planetary system. Results. We find that TOI-969 b is a transiting close-in (Pb ∼ 1.82 days) mini-Neptune planet (Formula Presented), placing it on the lower boundary of the hot-Neptune desert (Teq,b = 941 ± 31 K). The analysis of its internal structure shows that TOI-969 b is a volatile-rich planet, suggesting it underwent an inward migration. The radial velocity model also favors the presence of a second massive body in the system, TOI-969 c, with a long period of (Formula Presented) days, a minimum mass of (Formula Presented), and a highly eccentric orbit of (Formula Presented). Conclusions. The TOI-969 planetary system is one of the few around K-dwarfs known to have this extended configuration going from a very close-in planet to a wide-separation gaseous giant. TOI-969 b has a transmission spectroscopy metric of 93 and orbits a moderately bright (G = 11.3 mag) star, making it an excellent target for atmospheric studies. The architecture of this planetary system can also provide valuable information about migration and formation of planetary systems.
  •  
24.
  • Lis, D. C., et al. (författare)
  • Herschel/HIFI measurements of the ortho/para ratio in water towards Sagittarius B2(M) and W31C
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L26 -
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Herschel/HIFI observations of the fundamental rotational transitions of ortho- and para-H216O and H218O in absorption towards Sagittarius B2(M) and W31C. The ortho/para ratio in water in the foreground clouds on the line of sight towards these bright continuum sources is generally consistent with the statistical high-temperature ratio of 3, within the observational uncertainties. However, somewhat unexpectedly, we derive a low ortho/para ratio of 2.35 +/- 0.35, corresponding to a spin temperature of similar to 27 K, towards Sagittarius B2(M) at velocities of the expanding molecular ring. Water molecules in this region appear to have formed with, or relaxed to, an ortho/para ratio close to the value corresponding to the local temperature of the gas and dust.
  •  
25.
  • Luque, R., et al. (författare)
  • A planetary system with two transiting mini-Neptunes near the radius valley transition around the bright M dwarf TOI-776
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 645
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery and characterization of two transiting planets around the bright M1 V star LP 961-53 (TOI-776, J = 8.5 mag, M = 0.54 ± 0.03 M⊙) detected during Sector 10 observations of the Transiting Exoplanet Survey Satellite (TESS). Combining the TESS photometry with HARPS radial velocities, as well as ground-based follow-up transit observations from the MEarth and LCOGT telescopes, for the inner planet, TOI-776 b, we measured a period of Pb = 8.25 d, a radius of Rb = 1.85 ± 0.13 R⊙, and a mass of Mb = 4.0 ± 0.9 M⊙; and for the outer planet, TOI-776 c, a period of Pc = 15.66 d, a radius of Rc = 2.02 ± 0.14 R⊙, and a mass of Mc = 5.3 ± 1.8 M⊙. The Doppler data shows one additional signal, with a period of ~34 d, associated with the rotational period of the star. The analysis of fifteen years of ground-based photometric monitoring data and the inspection of different spectral line indicators confirm this assumption. The bulk densities of TOI-776 b and c allow for a wide range of possible interior and atmospheric compositions. However, both planets have retained a significant atmosphere, with slightly different envelope mass fractions. Thanks to their location near the radius gap for M dwarfs, we can start to explore the mechanism(s) responsible for the radius valley emergence around low-mass stars as compared to solar-like stars. While a larger sample of well-characterized planets in this parameter space is still needed to draw firm conclusions, we tentatively estimate that the stellar mass below which thermally-driven mass loss is no longer the main formation pathway for sculpting the radius valley is between 0.63 and 0.54 M⊙. Due to the brightness of the star, the TOI-776 system is also an excellent target for the James Webb Space Telescope, providing a remarkable laboratory in which to break the degeneracy in planetary interior models and to test formation and evolution theories of small planets around low-mass stars.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 482
Typ av publikation
tidskriftsartikel (405)
konferensbidrag (58)
annan publikation (7)
forskningsöversikt (7)
rapport (4)
bokkapitel (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (428)
övrigt vetenskapligt/konstnärligt (53)
populärvet., debatt m.m. (1)
Författare/redaktör
Persson, Carina, 196 ... (79)
Fridlund, Malcolm, 1 ... (61)
Gandolfi, D. (60)
Cabrera, J (44)
Rauer, H. (39)
Barragán, O. (39)
visa fler...
Grziwa, S. (39)
Palle, E. (39)
Guenther, E. W. (35)
Nowak, G. (34)
Csizmadia, Szilard (33)
Redfield, S. (33)
Winn, J. N. (33)
Luque, R. (33)
Persson, Henrik (31)
Persson, J. (31)
Hirano, T (30)
Fransson, Johan E.S. (30)
Persson, M (28)
Van Eylen, Vincent (28)
Deeg, H. (27)
Esposito, M. (26)
Smith, A. M.S. (26)
Ribas, I. (26)
Alonso, R. (25)
Endl, M. (25)
Cochran, William D. (25)
Lam, K. W.F. (24)
Prieto-Arranz, J. (24)
Livingston, J.H. (24)
Smith, Alexis M. S. (24)
Persson, S (23)
Palle, Enric (23)
Erikson, Anders (22)
Davies, M. B. (22)
Cochran, W. D. (22)
Korth, J. (22)
Hatzes, A. (22)
Fossati, L. (21)
Santos, N. C. (21)
Van Eylen, V. (21)
Barros, S.C.C. (20)
Udry, S. (20)
Fukui, A. (18)
Persson, B (18)
Sousa, S.G. (18)
Nyberg, J. (18)
Narita, Norio (18)
Latham, D. W. (18)
Georgieva, Iskra, 19 ... (18)
visa färre...
Lärosäte
Karolinska Institutet (131)
Chalmers tekniska högskola (120)
Lunds universitet (89)
Uppsala universitet (61)
Kungliga Tekniska Högskolan (43)
Sveriges Lantbruksuniversitet (40)
visa fler...
Göteborgs universitet (36)
Stockholms universitet (35)
Linköpings universitet (28)
Umeå universitet (27)
Linnéuniversitetet (13)
Örebro universitet (10)
Högskolan Kristianstad (7)
Malmö universitet (5)
Luleå tekniska universitet (3)
Mälardalens universitet (2)
Jönköping University (2)
Karlstads universitet (2)
Nordiska Afrikainstitutet (1)
Högskolan i Halmstad (1)
Mittuniversitetet (1)
RISE (1)
Naturhistoriska riksmuseet (1)
Marie Cederschiöld högskola (1)
Sophiahemmet Högskola (1)
visa färre...
Språk
Engelska (477)
Svenska (3)
Tyska (1)
Franska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (196)
Medicin och hälsovetenskap (101)
Teknik (57)
Lantbruksvetenskap (34)
Samhällsvetenskap (4)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy