SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Peter E. Coughlin) "

Sökning: WFRF:(Peter E. Coughlin)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2017
  • swepub:Mat__t
  •  
2.
  • Ade, Peter, et al. (författare)
  • The Simons Observatory : science goals and forecasts
  • 2019
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial con figuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping approximate to 10% of the sky to a white noise level of 2 mu K-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, r, at a target level of sigma(r) = 0.003. The large aperture telescope will map approximate to 40% of the sky at arcminute angular resolution to an expected white noise level of 6 mu K-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensor-to-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources.
  •  
3.
  • Andreoni, Igor, et al. (författare)
  • Target-of-opportunity Observations of Gravitational-wave Events with Vera C. Rubin Observatory
  • 2022
  • Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 260:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of the electromagnetic counterpart to the binary neutron star (NS) merger GW170817 has opened the era of gravitational-wave multimessenger astronomy. Rapid identification of the optical/infrared kilonova enabled a precise localization of the source, which paved the way to deep multiwavelength follow-up and its myriad of related science results. Fully exploiting this new territory of exploration requires the acquisition of electromagnetic data from samples of NS mergers and other gravitational-wave sources. After GW170817, the frontier is now to map the diversity of kilonova properties and provide more stringent constraints on the Hubble constant, and enable new tests of fundamental physics. The Vera C. Rubin Observatory's Legacy Survey of Space and Time can play a key role in this field in the 2020s, when an improved network of gravitational-wave detectors is expected to reach a sensitivity that will enable the discovery of a high rate of merger events involving NSs (∼tens per year) out to distances of several hundred megaparsecs. We design comprehensive target-of-opportunity observing strategies for follow-up of gravitational-wave triggers that will make the Rubin Observatory the premier instrument for discovery and early characterization of NS and other compact-object mergers, and yet unknown classes of gravitational-wave events.
  •  
4.
  • Coppejans, D. L., et al. (författare)
  • A Mildly Relativistic Outflow from the Energetic, Fast-rising Blue Optical Transient CSS161010 in a Dwarf Galaxy
  • 2020
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 895:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present X-ray and radio observations of the Fast Blue Optical Transient CRTS-CSS161010 J045834-081803 (CSS161010 hereafter) at t = 69-531 days. CSS161010 shows luminous X-ray (L-x similar to 5 x 10(39) erg s(-1)) and radio (L-nu similar to 10(29) erg s(-1) Hz(-1)) emission. The radio emission peaked at similar to 100 days post-transient explosion and rapidly decayed. We interpret these observations in the context of synchrotron emission from an expanding blast wave. CSS161010 launched a mildly relativistic outflow with velocity Gamma beta c >= 0.55c at similar to 100 days. This is faster than the non-relativistic AT 2018cow (Gamma beta c similar to 0.1c) and closer to ZTF18abvkwla (Gamma beta c >= 0.3c at 63 days). The inferred initial kinetic energy of CSS161010 (E-k greater than or similar to 10(51) erg) is comparable to that of long gamma-ray bursts, but the ejecta mass that is coupled to the mildly relativistic outflow is significantly larger (similar to 0.01-.1 M-circle dot). This is consistent with the lack of observed gamma-rays. The luminous X-rays were produced by a different emission component to the synchrotron radio emission. CSS161010 is located at similar to 150 Mpc in a dwarf galaxy with stellar mass M-* similar to 10(7) M-circle dot and specific star formation rate sSFR similar to 0.3 Gyr(-1). This mass is among the lowest inferred for host galaxies of explosive transients from massive stars. Our observations of CSS161010 are consistent with an engine-driven aspherical explosion from a rare evolutionary path of a H-rich stellar progenitor, but we cannot rule out a stellar tidal disruption event on a centrally located intermediate-mass black hole. Regardless of the physical mechanism, CSS161010 establishes the existence of a new class of rare (rate < 0.4% of the local core-collapse supernova rate) H-rich transients that can launch mildly relativistic outflows.
  •  
5.
  • Andreoni, Igor, et al. (författare)
  • GROWTH on S190814bv : Deep Synoptic Limits on the Optical/Near-infrared Counterpart to a Neutron Star-Black Hole Merger
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 890:2
  • Tidskriftsartikel (refereegranskat)abstract
    • On 2019 August 14, the Advanced LIGO and Virgo interferometers detected the high-significance gravitational wave (GW) signal S190814bv. The GW data indicated that the event resulted from a neutron star-black hole (NSBH) merger, or potentially a low-mass binary BH merger. Due to the low false-alarm rate and the precise localization (23 deg(2) at 90%), S190814bv presented the community with the best opportunity yet to directly observe an optical/near-infrared counterpart to an NSBH merger. To search for potential counterparts, the GROWTH Collaboration performed real-time image subtraction on six nights of public Dark Energy Camera images acquired in the 3 weeks following the merger, covering >98% of the localization probability. Using a worldwide network of follow-up facilities, we systematically undertook spectroscopy and imaging of optical counterpart candidates. Combining these data with a photometric redshift catalog, we ruled out each candidate as the counterpart to S190814bv and placed deep, uniform limits on the optical emission associated with S190814bv. For the nearest consistent GW distance, radiative transfer simulations of NSBH mergers constrain the ejecta mass of S190814bv to be M-ej < 0.04 M-circle dot at polar viewing angles, or M-ej < 0.03 M-circle dot if the opacity is kappa < 2 cm(2)g(-1). Assuming a tidal deformability for the NS at the high end of the range compatible with GW170817 results, our limits would constrain the BH spin component aligned with the orbital momentum to be chi < 0.7 for mass ratios Q < 6, with weaker constraints for more compact NSs.
  •  
6.
  • Djurfeldt, Göran, et al. (författare)
  • Afrint database
  • 2011
  • Annan publikation (övrigt vetenskapligt/konstnärligt)
  •  
7.
  • Andreoni, Igor, et al. (författare)
  • GROWTH on S190510g : DECam Observation Planning and Follow-up of a Distant Binary Neutron Star Merger Candidate
  • 2019
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 881:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The first two months of the third Advanced LIGO and Virgo observing run (2019 April-May) showed that distant gravitational-wave (GW) events can now be readily detected. Three candidate mergers containing neutron stars (NS) were reported in a span of 15 days, all likely located more than 100 Mpc away. However, distant events such as the three new NS mergers are likely to be coarsely localized, which highlights the importance of facilities and scheduling systems that enable deep observations over hundreds to thousands of square degrees to detect the electromagnetic counterparts. On 2019 May 10 02: 59:39.292 UT the GW candidate S190510g was discovered and initially classified as a binary neutron star (BNS) merger with 98% probability. The GW event was localized within an area of 3462 deg(2), later refined to 1166 deg(2) (90%) at a distance of 227 +/- 92 Mpc. We triggered Target-of-Opportunity observations with the Dark Energy Camera (DECam), a wide-field optical imager mounted at the prime focus of the 4 m Blanco Telescope at Cerro Tololo Inter-American Observatory in Chile. This Letter describes our DECam observations and our real-time analysis results, focusing in particular on the design and implementation of the observing strategy. Within 24 hr of the merger time, we observed 65% of the total enclosed probability of the final skymap with an observing efficiency of 94%. We identified and publicly announced 13 candidate counterparts. S190510g was reclassified 1.7 days after the merger, after our observations were completed, with a BNS merger probability reduced from 98% to 42% in favor of a terrestrial classification.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy