SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Petruk Ganna) "

Sökning: WFRF:(Petruk Ganna)

  • Resultat 1-17 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dahlman, Anna, et al. (författare)
  • Thrombin-derived C-terminal peptide reduces Candida-induced inflammation and infection in vitro and in vivo
  • 2021
  • Ingår i: Antimicrobial Agents and Chemotherapy. - 0066-4804. ; 65:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Infections due to the opportunistic fungus Candida have been on the rise in the last decades, especially in immunocompromised individuals and hospital settings. Unfortunately, the treatments available today are limited. Thrombin-derived C-terminal peptide (TCP-25) is an antimicrobial peptide (AMP) with antibacterial and immunomodulatory effects. In this work, we, for the first time, demonstrate the ability of TCP-25 ability to counteract Candida in vitro and in vivo. Using a combination of viable count assay (VCA), radial diffusion assay (RDA), and fluorescence and transmission electron microscopy analyses, TCP-25 was found to exert a direct fungicidal activity. An inhibitory activity of TCP-25 on NF-kB activation induced by both zymosan alone and heat-killed C. albicans was demonstrated in vitro using THP-1 cells, and in vivo using NF-kB reporter mice. Moreover, the immunomodulatory property of TCP-25 was further substantiated in vitro by analyzing cytokine responses in human blood stimulated with zymosan, and in vivo employing a zymosan-induced peritonitis model in C57BL/6 mice. The therapeutic potential of TCP-25 was demonstrated in mice infected with luminescent C. albicans. Finally, the binding between TCP-25 and zymosan was investigated using circular dichroism spectroscopy and intrinsic fluorescence analysis. Taken together, our results show that TCP-25 has a dual function by inhibiting Candida as well as the associated zymosan-induced inflammation. The latter function is accompanied by a change in secondary structure upon binding to zymosan. TCP-25, therefore, shows promise as a novel drug candidate against Candida infections.
  •  
2.
  • Lundgren, Sigrid, et al. (författare)
  • Analysis of bacteria, inflammation, and exudation in epidermal suction blister wounds reveals dynamic changes during wound healing
  • 2023
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The skin microbiome undergoes dynamic changes during different phases of wound healing, however the role of bacteria in the wound healing process remains poorly described. In this study, we aimed to determine how wound bacteria develop over time in epidermal wounds, and how they interact with inflammatory processes during wound healing. To this end, we analyzed wound fluid and swab samples collected from epidermal suction blister wounds in healthy volunteers. We found that bacterial numbers, measured in swabs and dressing fluid, increased rapidly after wounding and stabilized by day 8. The composition of bacterial species identified by MALDI-TOF mass spectrometry differed between wounds, but generally consisted primarily of commensal bacteria and remained largely stable over time. Inflammation and neutrophil activity, measured by quantification of cytokines and neutrophil proteins in dressing fluid, peaked on day 5. Exudation, measured by quantification of protein content in dressings, also peaked at this time and strongly correlated with cytokine and neutrophil protein levels. Inflammation, neutrophil activity, and exudation were not correlated with bacterial counts at any time, indicating that in normally healing wounds, these processes are primarily driven by the host and are independent of colonizing bacteria. Our analysis provides a comprehensive understanding of epidermal wound healing dynamics in the host and the role of the microbiome in healthy wound healing.Competing Interest StatementA.S. is a founder of in2cure AB, a parent company of Xinnate AB which was the sponsor of the clinical trial from which the biobank samples used in this study are derived. G.P. is employed part-time (20%) by Xinnate AB. The other authors have declared that no conflict of interest exists.Clinical TrialNCT05378997Funding StatementThis study was funded by grants from the Swedish Research Council (project 2017-02341, 2020-02016), Edvard Welanders Stiftelse and Finsenstiftelsen (Hudfonden), the Royal Physiographic Society, the Crafoord and Österlund Foundations, and the Swedish Government Funds for Clinical Research (ALF).Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:The Swedish ethical review authority (etikprövningsmyndigheten) gave ethical approval for this work (application number 2022-00527-01).I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.YesThe data that support the findings of this study are openly available in Zenodo at http://doi.org/10.5281/zenodo.10283373, reference number 10283373.BCAbicinchoninic acidCFUcolony forming unitsELISAenzyme-linked immunosorbent assayHBPheparin-binding proteinIFNinterferonILinterleukinMALDI-TOFMatrix Assisted Laser Desorption lonization -Time Of FlightMBTMALDI BiotyperMPOmyeloperoxidaseMSmass spectrometryNEneutrophil elastasePBSphosphate-buffered salineTCPthrombin-derived C-terminal peptideTNFtumor necrosis factor
  •  
3.
  • Petrlova, Jitka, et al. (författare)
  • Selective protein aggregation confines and inhibits endotoxins in wounds : Linking host defense to amyloid formation
  • 2023
  • Ingår i: iScience. - : Elsevier BV. - 2589-0042. ; 26:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacterial lipopolysaccharide (LPS) induces rapid protein aggregation in human wound fluid. We aimed to characterize these LPS-induced aggregates and their functional implications using a combination of mass spectrometry analyses, biochemical assays, biological imaging, cell experiments, and animal models. The wound-fluid aggregates encompass diverse protein classes, including sequences from coagulation factors, annexins, histones, antimicrobial proteins/peptides, and apolipoproteins. We identified proteins and peptides with a high aggregation propensity and verified selected components through Western blot analysis. Thioflavin T and Amytracker staining revealed amyloid-like aggregates formed after exposure to LPS in vitro in human wound fluid and in vivo in porcine wound models. Using NF-κB-reporter mice and IVIS bioimaging, we demonstrate that such wound-fluid LPS aggregates induce a significant reduction in local inflammation compared with LPS in plasma. The results show that protein/peptide aggregation is a mechanism for confining LPS and reducing inflammation, further emphasizing the connection between host defense and amyloidogenesis.
  •  
4.
  • Petrlova, Jitka, et al. (författare)
  • Thrombin-derived C-terminal fragments aggregate and scavenge bacteria and their proinflammatory products
  • 2020
  • Ingår i: Journal of Biological Chemistry. - 0021-9258. ; 295:11, s. 3417-3430
  • Tidskriftsartikel (refereegranskat)abstract
    • Thrombin-derived C-terminal peptides (TCPs), including a major 11-kDa fragment (TCP96), are produced through cleavage by human neutrophil elastase and aggregate lipopolysaccharide (LPS) and the Gram-negative bacterium Escherichia coli. However, the physiological roles of TCP96 in controlling bacterial infections and reducing LPS-induced inflammation are unclear. Here, using various biophysical methods, in silico molecular modeling, microbiological and cellular assays, and animal models, we examined the structural features and functional roles of recombinant TCP96 (rTCP96) in the aggregation of multiple bacteria and the Toll-like receptor (TLR) agonists they produce. We found that rTCP96 aggregates both Gram-negative and Gram-positive bacteria, including Staphylococcus aureus and Pseudomonas aeruginosa, and their cell-wall components LPS, lipid A, and lipoteichoic acid (LTA). The Gram-negative bacteria E. coli and P. aeruginosa were particularly sensitive to aggregation-induced bacterial permeabilization and killing. As a proof of concept, we show that rTCP96 reduces LPS-induced NF-κB activation in human monocytes, as well as in mouse models of LPS-induced subcutaneous inflammation. Moreover, in a mouse model of subcutaneous inoculation with P. aeruginosa, rTCP96 reduced bacterial levels. Together, these results link TCP-mediated aggregation of endotoxins and bacteria in vitro to attenuation of inflammation and bacterial levels in vivo.
  •  
5.
  •  
6.
  • Petruk, Ganna, et al. (författare)
  • Antioxidants from plants protect against skin photoaging
  • 2018
  • Ingår i: Oxidative Medicine and Cellular Longevity. - : Hindawi Limited. - 1942-0900 .- 1942-0994. ; 2018
  • Forskningsöversikt (refereegranskat)abstract
    • Exposure to UV light triggers the rapid generation and accumulation of reactive oxygen species (ROS) in skin cells, with consequent increase in oxidative stress and thus in photoaging. Exogenous supplementation with dietary antioxidants and/or skin pretreatment with antioxidant-based lotions before sun exposure might be a winning strategy against age-related skin pathologies. In this context, plants produce many secondary metabolites to protect themselves from UV radiations and these compounds can also protect the skin from photoaging. Phenolic compounds, ascorbic acid and carotenoids, derived from different plant species, are able to protect the skin by preventing UV penetration, reducing inflammation and oxidative stress, and influencing several survival signalling pathways. In this review, we focus our attention on the double role of oxidants in cell metabolism and on environmental and xenobiotic agents involved in skin photoaging. Moreover, we discuss the protective role of dietary antioxidants from fruits and vegetables and report their antiaging properties related to the reduction of oxidative stress pathways.
  •  
7.
  • Petruk, Ganna, et al. (författare)
  • Concentration- and pH-Dependent Oligomerization of the Thrombin-Derived C-Terminal Peptide TCP-25.
  • 2020
  • Ingår i: Biomolecules. - : MDPI. - 2218-273X. ; 10:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Peptide oligomerization dynamics affects peptide structure, activity, and pharmacodynamic properties. The thrombin C-terminal peptide, TCP-25 (GKYGFYTHVFRLKKWIQKVIDQFGE), is currently in preclinical development for improved wound healing and infection prevention. It exhibits turbidity when formulated at pH 7.4, particularly at concentrations of 0.3 mM or more. We used biochemical and biophysical approaches to explore whether the peptide self-associates and forms oligomers. The peptide showed a dose-dependent increase in turbidity as well as α-helical structure at pH 7.4, a phenomenon not observed at pH 5.0. By analyzing the intrinsic tryptophan fluorescence, we demonstrate that TCP-25 is more stable at high concentrations (0.3 mM) when exposed to high temperatures or a high concentration of denaturant agents, which is compatible with oligomer formation. The denaturation process was reversible above 100 µM of peptide. Dynamic light scattering demonstrated that TCP-25 oligomerization is sensitive to changes in pH, time, and temperature. Computational modeling with an active 18-mer region of TCP-25 showed that the peptide can form pH-dependent higher-order end-to-end oligomers and micelle-like structures, which is in agreement with the experimental data. Thus, TCP-25 exhibits pH- and temperature-dependent dynamic changes involving helical induction and reversible oligomerization, which explains the observed turbidity of the pharmacologically developed formulation.
  •  
8.
  • Petruk, Ganna, et al. (författare)
  • SARS-CoV-2 Spike protein binds to bacterial lipopolysaccharide and boosts proinflammatory activity
  • 2020
  • Ingår i: Journal of Molecular Cell Biology. - : Oxford University Press (OUP). - 1759-4685. ; 12:12, s. 916-932
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a link between high lipopolysaccharide (LPS) levels in the blood and the metabolic syndrome, and metabolic syndrome predisposes patients to severe COVID-19. Here, we define an interaction between SARS-CoV-2 spike (S) protein and LPS, leading to aggravated inflammation in vitro and in vivo. Native gel electrophoresis demonstrated that SARS-CoV-2 S protein binds to LPS. Microscale thermophoresis yielded a KD of ∼47 nM for the interaction. Computational modeling and all-atom molecular dynamics simulations further substantiated the experimental results, identifying a main LPS-binding site in SARS-CoV-2 S protein. S protein, when combined with low levels of LPS, boosted nuclear factor-kappa B (NF-κB) activation in monocytic THP-1 cells and cytokine responses in human blood and peripheral blood mononuclear cells, respectively. The in vitro inflammatory response was further validated by employing NF-κB reporter mice and in vivo bioimaging. Dynamic light scattering, transmission electron microscopy, and LPS-FITC analyses demonstrated that S protein modulated the aggregation state of LPS, providing a molecular explanation for the observed boosting effect. Taken together, our results provide an interesting molecular link between excessive inflammation during infection with SARS-CoV-2 and comorbidities involving increased levels of bacterial endotoxins.
  •  
9.
  • Petruk, Ganna, et al. (författare)
  • Targeting Toll-like receptor-driven systemic inflammation by engineering an innate structural fold into drugs
  • 2023
  • Ingår i: Nature Communications. - : Springer. - 2041-1723. ; 14, s. 1-20
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a clinical need for conceptually new treatments that target the excessive activation of inflammatory pathways during systemic infection. Thrombin-derived C-terminal peptides (TCPs) are endogenous anti-infective immunomodulators interfering with CD14-mediated TLR-dependent immune responses. Here we describe the development of a peptide-based compound for systemic use, sHVF18, expressing the evolutionarily conserved innate structural fold of natural TCPs. Using a combination of structure- and in silico-based design, nuclear magnetic resonance spectroscopy, biophysics, mass spectrometry, cellular, and in vivo studies, we here elucidate the structure, CD14 interactions, protease stability, transcriptome profiling, and therapeutic efficacy of sHVF18. The designed peptide displays a conformationally stabilized, protease resistant active innate fold and targets the LPS-binding groove of CD14. In vivo, it shows therapeutic efficacy in experimental models of endotoxin shock in mice and pigs and increases survival in mouse models of systemic polymicrobial infection. The results provide a drug class based on Nature´s own anti-infective principles.
  •  
10.
  • Petruk, Ganna, et al. (författare)
  • The role of full-length apoE in clearance of Gram-negative bacteria and their endotoxins
  • 2021
  • Ingår i: Journal of Lipid Research. - 0022-2275. ; 62
  • Tidskriftsartikel (refereegranskat)abstract
    • ApoE is a well-known lipid-binding protein that plays a main role in the metabolism and transport of lipids. More recently, apoE-derived peptides have been shown to exert antimicrobial effects. Here, we investigated the antibacterial activity of apoE using in vitro assays, advanced imaging techniques, and in vivo mouse models. The formation of macromolecular complexes of apoE and endotoxins from Gram-negative bacteria was explored using gel shift assays, transmission electron microscopy, and CD spectroscopy followed by calculation of the α-helical content. The binding affinity of apoE to endotoxins was also confirmed by fluorescent spectroscopy detecting the quenching and shifting of tryptophan intrinsic fluorescence. We showed that apoE exhibits antibacterial activity particularly against Gram-negative bacteria such as Pseudomonas aeruginosa and Escherichia coli. ApoE protein folding was affected by binding of bacterial endotoxin components such as lipopolysaccharide (LPS) and lipid A, yielding similar increases in the apoE α-helical content. Moreover, high-molecular-weight complexes of apoE were formed in the presence of LPS, but not to the same extent as with lipid A. Together, our results demonstrate the ability of apoE to kill Gram-negative bacteria, interact with their endotoxins, which leads to the structural changes in apoE and the formation of aggregate-like complexes.
  •  
11.
  •  
12.
  • Puthia, Manoj, et al. (författare)
  • Antibacterial and Anti-Inflammatory Effects of Apolipoprotein E
  • 2022
  • Ingår i: Biomedicines. - : MDPI AG. - 2227-9059. ; 10:6, s. 1430-1430
  • Tidskriftsartikel (refereegranskat)abstract
    • Apolipoprotein E (APOE) is a lipid-transport protein that functions as a key mediator of lipid transport and cholesterol metabolism. Recent studies have shown that peptides derived from human APOE display anti-inflammatory and antimicrobial effects. Here, we applied in vitro assays and fluorescent microscopy to investigate the anti-bacterial effects of full-length APOE. The interaction of APOE with endotoxins from Escherichia coli was explored using surface plasmon resonance, binding assays, transmission electron microscopy and all-atom molecular dynamics (MD) simulations. We also studied the immunomodulatory activity of APOE using in vitro cell assays and an in vivo mouse model in combination with advanced imaging techniques. We observed that APOE exhibits anti-bacterial activity against several Gram-negative bacterial strains of Pseudomonas aeruginosa and Escherichia coli. In addition, we showed that APOE exhibits a significant binding affinity for lipopolysaccharide (LPS) and lipid A as well as heparin. MD simulations identified the low-density lipoprotein receptor (LDLR) binding region in helix 4 of APOE as a primary binding site for these molecules via electrostatic interactions. Together, our data suggest that APOE may have an important role in controlling inflammation during Gram-negative bacterial infection.
  •  
13.
  • Puthia, Manoj, et al. (författare)
  • Bioactive Suture with Added Innate Defense Functionality for the Reduction of Bacterial Infection and Inflammation
  • 2023
  • Ingår i: Advanced healthcare materials. - 2192-2659. ; 12:31
  • Tidskriftsartikel (refereegranskat)abstract
    • Surgical site infections (SSI) are a clinical and economic burden. Suture-associated SSI may develop when bacteria colonize the suture surface and form biofilms that are resistant to antibiotics. Thrombin-derived C-terminal peptide (TCP)-25 is a host defense peptide with a unique dual mode of action that can target both bacteria and the excessive inflammation induced by bacterial products. The peptide demonstrates therapeutic potential in preclinical in vivo wound infection models. In this study, the authors set out to explore whether TCP-25 can provide a new bioactive innate immune feature to hydrophilic polyglactin sutures (Vicryl). Using a combination of biochemical, biophysical, antibacterial, biofilm, and anti-inflammatory assays in vitro, in silico molecular modeling studies, along with experimental infection and inflammation models in mice, a proof-of-concept that TCP-25 can provide Vicryl sutures with a previously undisclosed host defense capacity, that enables targeting of bacteria, biofilms, and the accompanying inflammatory response, is shown.
  •  
14.
  • Puthia, Manoj, et al. (författare)
  • Bioactive Suture with Added Innate Defense Functionality for the Reduction of Bacterial Infection and Inflammation
  • 2023
  • Ingår i: Advanced Healthcare Materials. - : Wiley. - 2192-2640 .- 2192-2659. ; 12:31, s. 1-20
  • Tidskriftsartikel (refereegranskat)abstract
    • Surgical site infections (SSI) are a clinical and economic burden. Suture-associated SSI may develop when bacteria colonize the suture surface and form biofilms that are resistant to antibiotics. Thrombin-derived C-terminal peptide (TCP)-25 is a host defense peptide with a unique dual mode of action that can target both bacteria and the excessive inflammation induced by bacterial products. The peptide demonstrates therapeutic potential in preclinical in vivo wound infection models. In this study, the authors set out to explore whether TCP-25 can provide a new bioactive innate immune feature to hydrophilic polyglactin sutures (Vicryl). Using a combination of biochemical, biophysical, antibacterial, biofilm, and anti-inflammatory assays in vitro, in silico molecular modeling studies, along with experimental infection and inflammation models in mice, a proof-of-concept that TCP-25 can provide Vicryl sutures with a previously undisclosed host defense capacity, that enables targeting of bacteria, biofilms, and the accompanying inflammatory response, is shown.
  •  
15.
  • Puthia, Manoj, et al. (författare)
  • Experimental Model of Pulmonary Inflammation Induced by SARS-CoV-2 Spike Protein and Endotoxin
  • 2022
  • Ingår i: ACS Pharmacology and Translational Science. - : American Chemical Society (ACS). - 2575-9108. ; 5:3, s. 141-148
  • Tidskriftsartikel (refereegranskat)abstract
    • COVID-19 is characterized by a dysregulated and excessive inflammatory response and, in severe cases, acute respiratory distress syndrome. We have recently demonstrated a previously unknown high-affinity interaction between the SARS-CoV-2 spike (S) protein and bacterial lipopolysaccharide (LPS), leading to the boosting of inflammation. Here we present a mouse inflammation model employing the coadministration of aerosolized S protein together with LPS to the lungs. Using NF-κB-RE-Luc reporter and C57BL/6 mice followed by combinations of bioimaging, cytokine, chemokine, fluorescence-activated cell sorting, and histochemistry analyses, we show that the model yields severe pulmonary inflammation and a cytokine profile similar to that observed in COVID-19. Therefore, the model offers utility for analyses of the pathophysiological features of COVID-19 and the development of new treatments.
  •  
16.
  • Strömdahl, Ann Charlotte, et al. (författare)
  • Peptide-coated polyurethane material reduces wound infection and inflammation
  • 2021
  • Ingår i: Acta Biomaterialia. - : Elsevier BV. - 1742-7061. ; 128, s. 314-331
  • Tidskriftsartikel (refereegranskat)abstract
    • There is an urgent need for treatments that not only reduce bacterial infection that occurs during wounding but that also target the accompanying excessive inflammatory response. TCP-25, a thrombin-derived antibacterial peptide, scavenges toll-like receptor agonists such as endotoxins and lipoteichoic acid and prevents toll-like receptor-4 dimerization to reduce infection-related inflammation in vivo. Using a combination of biophysical, cellular, and microbiological assays followed by experimental studies in mouse and pig models, we show that TCP-25, when delivered from a polyurethane (PU) material, exerts anti-infective and anti-inflammatory effects in vitro and in vivo. Specifically, TCP-25 killed the common wound pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, in both in vitro and in vivo assays. Furthermore, after its release from the PU material, the peptide retained its capacity to induce its helical conformation upon endotoxin interaction, yielding reduced activation of NF-κB in THP-1 reporter cells, and diminished accumulation of inflammatory cells and subsequent release of IL-6 and TNF-α in subcutaneous implant models in vivo. Moreover, in a porcine partial thickness wound infection model, TCP-25 treated infection with S. aureus, and reduced the concomitant inflammatory response. Taken together, these findings demonstrate a combined antibacterial and anti-inflammatory effect of TCP-25 delivered from PU in vitro, and in mouse and porcine in vivo models of localized infection-inflammation. Statement of significance: Local wound infections may result in systemic complications and can be difficult to treat due to increasing antimicrobial resistance. Surgical site infections and biomaterial-related infections present a major challenge for hospitals. In recent years, various antimicrobial coatings have been developed for infection prevention and current concepts focus on various matrices with added anti-infective components, including various antibiotics and antiseptics. We have developed a dual action wound dressing concept where the host defense peptide TCP-25, when delivered from a PU material, targets both bacterial infection and the accompanying inflammation. TCP-25 PU showed efficacy in in vitro and experimental wound models in mouse and minipigs.
  •  
17.
  • Wallblom, Karl, et al. (författare)
  • Bactogram : Spatial Analysis of Bacterial Colonization in Epidermal Wounds
  • 2024
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Skin barrier damage and subsequent development of harmful microbiota contribute to conditions such as wound infections, atopic dermatitis, and chronic wounds, which impact millions of people globally and pose a significant economic burden on healthcare systems. Established microbial sampling methods, such as swabs and tissue biopsies, provide limited information on the spatial distribution of bacteria. We here describe a new method that produces a visual map of the distribution of cultivable bacteria, denoted “Bactogram”, across the whole wound and surrounding skin, suitable for image-based quantification. As part of an exploratory endpoint in a clinical trial (NCT05378997) we applied the Bactogram method to 48 suction blister wounds in 24 healthy volunteers. Bacteria developed in all wounds, predominantly on the skin under the dressing and near wound edges. Two quantification methods, based on visual scoring and image analysis, demonstrated high inter-, and intra-rater agreement and were used to characterize bacterial re-colonization during epidermal wound healing. We also demonstrated proof of concept that the method can be used with chromogenic agar to enable spatial identification of pathogenic bacterial species, such as Staphylococcus aureus. In conclusion, this study introduces a simple method for sampling bacteria over large areas and generating a bacterial map that can identify spatial variations in bacterial composition and abundance in skin and wound conditions.Competing Interest StatementA.S. is a founder of in2cure AB, a parent company of Xinnate AB, companies that are developing therapies based on thrombin-derived peptides and variants. G.P. is employed part-time (20%) by Xinnate AB. The other authors have declared that no conflict of interest exists.Clinical TrialNCT05378997Clinical Protocols https://doi.org/10.1136/bmjopen-2022-064866 Funding StatementThe exploratory data presented here was supported by grants from the Swedish Research Council (project 2017-02341, 2020-02016), Edvard Welanders Stiftelse and Finsenstiftelsen (Hudfonden), the Royal Physiographic Society, the Crafoord and Österlund Foundations, and the Swedish Government Funds for Clinical Research (ALF). Xinnate AB provided the project management resources and expertise for the regulatory development enabling the clinical parts of the Safety study that generated the control samples used in this work.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Etikprövningsmyndigheten (Swedish Ethics committee) gave ethical approval for this work.I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.YesThe generated pictures of the Bactograms will be available on reasonable request, after the publication of the treated wound data in a separate publication, since the original images inevitably include both treated and untreated wounds. The code used for the ImageJ macros can be found in Supplementary Data 3. The Python code for creating spatial heat maps can be found in Supplementary Data 4. The complete score data from both the visual scoring and the computer-assisted method is provided in Supplementary Data 5. Further information or instructions required to reanalyze the data reported in this paper are available from the lead contact upon reasonable request.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-17 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy