SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pooga Margus) "

Sökning: WFRF:(Pooga Margus)

  • Resultat 1-25 av 39
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arukuusk, Piret, et al. (författare)
  • Differential Endosomal Pathways for Radically Modified Peptide Vectors
  • 2013
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 24:10, s. 1721-1732
  • Tidskriftsartikel (refereegranskat)abstract
    • In the current work we characterize the uptake mechanism of two NickFect family members, NF51 and NF1, related to the biological activity of transfected plasmid DNA (pDNA). Both vectors condense pDNA into small negatively charged nanoparticles that transfect He La cells with equally high efficacy and the delivery is mediated by SCARA3 and SCARA.5 receptors. NF1 condenses DNA into less homogeneous and less stable nanoparticles than NF51. NF51/pDNA nanoparticles enter the cells via macropinocytosis, while NF1/pDNA complexes use clathrin- or caveolae-mediated endocytosis and macropinocytosis. Analysis of separated endosomal compartments uncovered lysomotropic properties of NF51 that was also proven by cotransfection with chloroquine. In summary we characterize how radical modifications in peptides, such as introducing a kink in the structure of NF51 or including extra negative charge by phospho-tyrosine substitution in NF1, resulted in equally high efficacy for gene delivery, although this efficacy is achieved by using differential transfection pathways.
  •  
2.
  • Arukuusk, Piret, et al. (författare)
  • New generation of efficient peptide-based vectors, NickFects, for the delivery of nucleic acids
  • 2013
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642. ; 1828:5, s. 1365-1373
  • Tidskriftsartikel (refereegranskat)abstract
    • Harnessing of a branched structure is a novel approach in the design of cell-penetrating peptides and it has provided highly efficient transfection reagents for intracellular delivery of nucleic acids. The new stearylated TP10 analogs, NickFects, condense plasmid DNA, splice correcting oligonucleotides and short interfering RNAs into stable nanoparticles with a size of 62-160 nm. Such nanoparticles have a negative surface charge (-11 to -18 mV) in serum containing medium and enable highly efficient gene expression, splice correction and gene silencing. One of the novel peptides, NickFect51 is capable of transfecting plasmid DNA into a large variety of cell lines, including refractory suspension and primary cells and in several cases exceeds the transfection level of commercially available reagent Lipofectamine (TM) 2000 without any cytotoxic side effects. Additionally we demonstrate the advantages of NickFect51 in a protein production system, QMCF technology, for expression and production of recombinant proteins in hardly transfectable suspension cells.
  •  
3.
  • Biswas, Abhijit, et al. (författare)
  • Choosing an Optimal Solvent Is Crucial for Obtaining Cell-Penetrating Peptide Nanoparticles with Desired Properties and High Activity in Nucleic Acid Delivery
  • 2023
  • Ingår i: Pharmaceutics. - : MDPI AG. - 1999-4923. ; 15:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell-penetrating peptides (CPPs) are highly promising transfection agents that can deliver various compounds into living cells, including nucleic acids (NAs). Positively charged CPPs can form non-covalent complexes with negatively charged NAs, enabling simple and time-efficient nanoparticle preparation. However, as CPPs have substantially different chemical and physical properties, their complexation with the cargo and characteristics of the resulting nanoparticles largely depends on the properties of the surrounding environment, i.e., solution. Here, we show that the solvent used for the initial dissolving of a CPP determines the properties of the resulting CPP particles formed in an aqueous solution, including the activity and toxicity of the CPP–NA complexes. Using different biophysical methods such as dynamic light scattering (DLS), atomic force microscopy (AFM), transmission and scanning electron microscopy (TEM and SEM), we show that PepFect14 (PF14), a cationic amphipathic CPP, forms spherical particles of uniform size when dissolved in organic solvents, such as ethanol and DMSO. Water-dissolved PF14, however, tends to form micelles and non-uniform aggregates. When dissolved in organic solvents, PF14 retains its α-helical conformation and biological activity in cell culture conditions without any increase in cytotoxicity. Altogether, our results indicate that by using a solvent that matches the chemical nature of the CPP, the properties of the peptide–cargo particles can be tuned in the desired way. This can be of critical importance for in vivo applications, where CPP particles that are too large, non-uniform, or prone to aggregation may induce severe consequences.
  •  
4.
  • Dowaidar, Moataz, et al. (författare)
  • Role of autophagy in cell-penetrating peptide transfection model
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell-penetrating peptides (CPPs) uptake mechanism is still in need of more clarification to have a better understanding of their action in the mediation of oligonucleotide transfection. In this study, the effect on early events (1 h treatment) in transfection by PepFect14 (PF14), with or without oligonucleotide cargo on gene expression, in HeLa cells, have been investigated. The RNA expression profile was characterized by RNA sequencing and confirmed by qPCR analysis. The gene regulations were then related to the biological processes by the study of signaling pathways that showed the induction of autophagy-related genes in early transfection. A ligand library interfering with the detected intracellular pathways showed concentration-dependent effects on the transfection efficiency of splice correction oligonucleotide complexed with PepFect14, proving that the autophagy process is induced upon the uptake of complexes. Finally, the autophagy induction and colocalization with autophagosomes have been confirmed by confocal microscopy and transmission electron microscopy. We conclude that autophagy, an inherent cellular response process, is triggered by the cellular uptake of CPP-based transfection system. This finding opens novel possibilities to use autophagy modifiers in future gene therapy.
  •  
5.
  • Freimann, Krista, et al. (författare)
  • Optimization of in vivo DNA delivery with NickFect peptide vectors
  • 2016
  • Ingår i: Journal of Controlled Release. - : Elsevier BV. - 0168-3659 .- 1873-4995. ; 241, s. 135-143
  • Tidskriftsartikel (refereegranskat)abstract
    • As the field of gene therapy progresses, an increasingly urgent need has arisen for efficient and non-toxic vectors for the in vivo delivery of nucleic acids. Cell-penetrating peptides (CPP) are very efficient transfection reagents in vitro, however, their application in vivo needs improvement. To enhance in vivo transfection we designed various CPPs based on previous knowledge of internalization studies and physiochemical properties of NickFect (NF) nanoparticles. We show that increment of the helicity of these Transportan10 analogues improves the transfection efficiency. We rationally design by modifying the net charge and the helicity of the CPP a novel amphipathic α-helical peptide NF55 for in vivo application. NF55 condenses DNA into stable nanoparticles that are resistant to protease degradation, promotes endosomal escape, and transfects the majority of cells in a large cell population. We demonstrate that NF55 mediates DNA delivery in vivo with gene induction efficiency that is comparable to commercial transfection reagents. In addition to gene induction in healthy mice, NF55/DNA nanoparticles showed promising tumor transfection in various mouse tumor models, including an intracranial glioblastoma model. The efficiency of NF55 to convey DNA specifically into tumor tissue increased even further after coupling a PEG2000 to the peptide via a disulphide-bond. Furthermore, a solid formulation of NF55/DNA displayed an excellent stability profile without additives or special storage conditions. Together, its high transfection efficacy and stability profile make NF55 an excellent vector for the delivery of DNA in vivo.
  •  
6.
  • Juks, Carmen, et al. (författare)
  • The role of endocytosis in the uptake and intracellular trafficking of PepFect14-nucleic acid nanocomplexes via class A scavenger receptors
  • 2015
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642. ; 1848:12, s. 3205-3216
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell penetrating peptides are efficient tools to deliver various bioactive cargos into cells, but their exactfunctioning mechanism is still debated. Recently, we showed that a delivery peptide PepFect14 condenses oligonudeotides (ON) into negatively charged nanocomplexes that are taken up by cells via class A scavenger receptors (SR-As). Here we unraveled the uptake mechanism and intracellular trafficking of PF14-ON nanocomplexes in HeLa cells. Macropinocytosis and caveolae-mediated endocytosis are responsible for the intracellular functionality of nucleic acids packed into nanocomplexes. However, only a negligible fraction of the complexes were trafficked to endoplasmic reticulum or Golgi apparatus the common destinations of caveolar endocytosis. Neither were the PF14-SCO nanocomplexes routed to endo-lysosomal pathway, and they stayed in vesicles with slightly acidic pH, which were not marked with LysoSensor. Naked ON, in contrary, was rapidly targeted to acidic vesicles and lysosomes. The transmission electron microscopy analysis of interactions between SR-As and PF14-ON nanocomplexes on ultrastructural level revealed that nanocomplexes localized on the plasma membrane in close proximity to SR-As and their colocalization is retained in cells, suggesting that PF14-ON complexes associate with targeted receptors.
  •  
7.
  • Lehto, Tõnis, et al. (författare)
  • Saturated Fatty Acid Analogues of Cell-Penetrating Peptide PepFect14: Role of Fatty Acid Modification in Complexation and Delivery of Splice-Correcting Oligonucleotides
  • 2017
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 28:3, s. 782-792
  • Tidskriftsartikel (refereegranskat)abstract
    • Modifying cell-penetrating peptides (CPPs) with fatty acids has long been used to improve peptide-mediated nucleic acid delivery. In this study we have revisited this phenomenon with a systematic approach where we developed a structure activity relationship to describe the role of the acyl chain length in the transfection process. For that we took a well studied CPP, PepFectl4, as the basis and varied its N-terminal acyl chain length from 2 to 22 carbons. To evaluate the delivery efficiency, the peptides were noncovalently complexed with a splice-correcting oligonucleotide (SCO) and tested in HeLa pLuc705 reporter cell line. Our results demonstrate that biological splice-correction activity emerges from acyl chain of 12 carbons and increases linearly with each additional carbon. To assess the underlying factors regarding how the transfection efficacy of these complexes is dependent on hydrophobicity, we used an array of different methods. For the functionally active peptides (C12-22) there was no apparent difference in their physicochemical properties, including complex formation efficiency, hydrodynamic size, and zeta potential. Moreover, membrane activity studies with peptides and their complexes with SCOs confirmed that the toxicity of the complexes at higher molar ratios is mainly caused by the free fraction of the peptide which is not incorporated into the peptide/oligonucleotide complexes. Finally, we show that the increase in splice-correcting activity correlates with the ability of the complexes to associate with the cells. Collectively these studies lay the ground work for how to design highly efficient CPPs and how to optimize their oligonucleotide complexes for lowest toxicity without losing efficiency.
  •  
8.
  • Margus, Helerin, et al. (författare)
  • Characteristics of Cell-Penetrating Peptide/Nucleic Acid Nanoparticles
  • 2016
  • Ingår i: Molecular Pharmaceutics. - : American Chemical Society (ACS). - 1543-8384 .- 1543-8392. ; 13:1, s. 172-179
  • Tidskriftsartikel (refereegranskat)abstract
    • Nucleic acids are highly promising candidates for the treatment of various genetic diseases. However, due to the large size and negative charge, nucleic acids are not efficiently taken up by cells, and thus, their clinical potential remains limited so far. Therefore, various delivery vehicles have been designed to assist the cellular uptake of nucleic acids. Among these, cell-penetrating peptides (CPPs) have gained increasing popularity as efficient and nontoxic delivery vectors. CPPs can be coupled to nucleic acids either by covalent or noncovalent association. Noncovalent coupling, which is based on the formation of nanoparticle-like nanocomplexes (NP), has received much attention in recent years, and the number of studies employing the strategy is explosively increasing due to the high therapeutic potential. However, the properties of CPP/nucleic acid NPs have not been characterized in sufficient detail yet. We performed a comprehensive analysis of the size and morphology of nucleic acid nanoparticles with novel transfection peptides, PepFects (PFs) and NickFects (NFs), using negative staining transmission electron microscopy (TEM). In addition, we examined whether the attachment of fluorescence or (nano)gold label to nucleic acid affects the nanocomplex formation or its morphology. We demonstrated that transportan-10-based new generation CPPs from PF and NF families condense nucleic acids to NPs of homogeneous size and shape. The size and shape of assembled nanoparticles depend on the type of the complexed nucleic acid and the sequence of the used peptide, whereas the label on the nucleic acid does not influence the gross characteristics of formed NPs.
  •  
9.
  • Oskolkov, Nikita, et al. (författare)
  • NickFects, Phosphorylated Derivatives of Transportan 10 for Cellular Delivery of Oligonucleotides
  • 2011
  • Ingår i: International journal of peptide research and therapeutics. - : Springer Science and Business Media LLC. - 1573-3149 .- 1573-3904. ; 17:2, s. 147-157
  • Tidskriftsartikel (refereegranskat)abstract
    • Oligonucleotide-based gene regulation has a high potential in gene therapy, but the plasma membrane is impermeable for nucleic acid polymers and, consequently, an efficient and non-toxic transfection agent is needed for their delivery into the cell. In this study we present a novel series, NickFects, of chemically modified TP10 peptide-based delivery vectors used for the cellular delivery of single-stranded oligonucleotides. These carriers, obtained by replacement of Ile8 by threonine in stearyl-TP10 and by modifying of tyrosine and/or threonine, respectively, by phosphorylation formed 300-500 nm in size peptide: oligonucleotide nanocomplexes with negative surface charges. The highest splice-correcting effect was obtained when phosphorotiate 2'-O-methyl oligonucleotides were transduced into cells by NickFect1 (NF1) or NickFect2 (NF2). In addition, we also show how a small modification (one or two negative charges) in peptide sequence can affect its ability to deliver ONs into cells and increase their potency in the splicing redirection assay. Our studies demonstrate that NF1 and NF2 have higher transfection efficacy for oligonucleotides as compared to the most commonly used transfection agent Lipofectamine (TM) 2000 and lead to higher biological response in cells.
  •  
10.
  • Sork, Helena, et al. (författare)
  • Lipid-based Transfection Reagents Exhibit Cryo-induced Increase in Transfection Efficiency
  • 2016
  • Ingår i: Molecular Therapy Nucleic Acids. - : Elsevier BV. - 2162-2531. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • The advantages of lipid-based transfection reagents have permitted their widespread use in molecular biology and gene therapy. This study outlines the effect of cryo-manipulation of a cationic lipid-based formulation, Lipofectamine 2000, which, after being frozen and thawed, showed orders of magnitude higher plasmid delivery efficiency throughout eight different cell lines, without compromising cell viability. Increased transfection efficiency with the freeze-thawed reagent was also seen with 2'-O-methyl phosphorothioate oligonucleotide delivery and in a splice-correction assay. Most importantly, a log-scale improvement in gene delivery using the freeze-thawed reagent was seen in vivo. Using three different methods, we detected considerable differences in the polydispersity of the different nucleic acid complexes as well as observed a clear difference in their surface spreading and sedimentation, with the freeze-thawed ones displaying substantially higher rate of dispersion and deposition on the glass surface. This hitherto overlooked elevated potency of the freeze-thawed reagent facilitates the targeting of hard-to-transfect cells, accomplishes higher transfection rates, and decreases the overall amount of reagent needed for delivery. Additionally, as we also saw a slight increase in plasmid delivery using other freeze-thawed transfection reagents, we postulate that freeze-thawing might prove to be useful for an even wider variety of transfection reagents.
  •  
11.
  • Veiman, Kadi-Liis, et al. (författare)
  • PepFect14 Peptide Vector for Efficient Gene Delivery in Cell Cultures
  • 2013
  • Ingår i: Molecular Pharmaceutics. - : American Chemical Society (ACS). - 1543-8384 .- 1543-8392. ; 10:1, s. 199-210
  • Tidskriftsartikel (refereegranskat)abstract
    • The successful applicability of gene therapy approaches will heavily rely on the development of efficient and safe nonviral gene delivery vectors, for example, cell-penetrating peptides (CPPs). CPPs can condense oligonucleotides and plasmid DNA (pDNA) into nanoparticles, thus allowing the transfection of genetic material into cells. However, despite few promising attempts, CPP-mediated pDNA delivery has been relatively inefficient due to the unfavorable nanoparticle characteristics or the nanoparticle entrapment to endocytic compartments. In many cases, both of these drawbacks could be alleviated by modifying CPPs with a stearic acid residue, as demonstrated in the delivery of both the pDNA and the short oligonucleotides. In this study, PepFect14 (PF14) peptide, previously used for the transport of shorter oligonucleotides, is demonstrated to be suited also for the delivery of pDNA. It is shown that PF14 forms stable nanoparticles with pDNA with a negative surface charge and size of around 130-170 nm. These nanoparticles facilitate efficient gene delivery and expression in a variety of regular adherent cell lines and also in difficult-to-transfect primary cells. Uptake studies indicate that PF14/pDNA nanoparticles are utilizing class A scavenger receptors (SCARA) and caveolae-mediated endocytosis as the main route for cellular internalization. Conclusively, PF14 is an efficient nonviral vector for gene delivery.
  •  
12.
  • Berntsson, Elina, et al. (författare)
  • Characterization of Uranyl (UO22+) Ion Binding to Amyloid Beta (Aβ) Peptides : Effects on Aβ Structure and Aggregation
  • 2023
  • Ingår i: ACS Chemical Neuroscience. - 1948-7193. ; 14:15, s. 2618-2633
  • Tidskriftsartikel (refereegranskat)abstract
    • Uranium (U) is naturally present in ambient air, water, and soil, and depleted uranium (DU) is released into the environment via industrial and military activities. While the radiological damage from U is rather well understood, less is known about the chemical damage mechanisms, which dominate in DU. Heavy metal exposure is associated with numerous health conditions, including Alzheimer’s disease (AD), the most prevalent age-related cause of dementia. The pathological hallmark of AD is the deposition of amyloid plaques, consisting mainly of amyloid-β (Aβ) peptides aggregated into amyloid fibrils in the brain. However, the toxic species in AD are likely oligomeric Aβ aggregates. Exposure to heavy metals such as Cd, Hg, Mn, and Pb is known to increase Aβ production, and these metals bind to Aβ peptides and modulate their aggregation. The possible effects of U in AD pathology have been sparsely studied. Here, we use biophysical techniques to study in vitro interactions between Aβ peptides and uranyl ions, UO22+, of DU. We show for the first time that uranyl ions bind to Aβ peptides with affinities in the micromolar range, induce structural changes in Aβ monomers and oligomers, and inhibit Aβ fibrillization. This suggests a possible link between AD and U exposure, which could be further explored by cell, animal, and epidemiological studies. General toxic mechanisms of uranyl ions could be modulation of protein folding, misfolding, and aggregation. 
  •  
13.
  • Carreras-Badosa, Gemma, et al. (författare)
  • NickFect type of cell-penetrating peptides present enhanced efficiency for microRNA-146a delivery into dendritic cells and during skin inflammation
  • 2020
  • Ingår i: Biomaterials. - : Elsevier BV. - 0142-9612 .- 1878-5905. ; 262
  • Tidskriftsartikel (refereegranskat)abstract
    • MicroRNAs (miRNAs) are post-transcriptional gene expression regulators with potential therapeutic applications. miR-146a is a negative regulator of inflammatory processes in both tissue-resident and specialized immune cells and may therefore have therapeutic effect in inflammatory skin diseases. PepFect (PF) and NickFect (NF) type of cell-penetrating peptides (CPPs) have previously been shown to deliver miRNA mimics and/or siRNAs into cell cultures and in vivo. Here, we first demonstrate that selected PF- and NF-type of CPPs support delivery of fluorescent labelled miRNA mimics into keratinocytes (KCs) and dendritic cells (DCs). Second, we show that both PF- and NF-miR-146a nanocomplexes were equally effective in KCs, while NFs were more efficient in DCs as assessed by downregulation of miR-146a-influenced genes. None of miRNA nanocomplexes with the tested CPPs influenced the viability of KCs and DCs nor caused activation of DCs according to CD86 and CD83 markers. Transmission electron microscopy analysis with Nanogold-labelled miR-146a mimics and assessment of endocytic trafficking pathways revealed endocytosis as an active route of delivery in both KCs and DCs for all tested CPPs. However, consistent with the higher efficiency, NF-delivered miR-146a was detected more often outside endosomes in DCs. Finally, pre-injection of NF71:miR-146a nanocomplexes was confirmed to suppress inflammatory responses in a mouse model of irritant contact dermatitis as shown by reduced ear swelling response and downregulation of pro-inflammatory cytokines, including IL-6, IL-1 beta, IL-33 and TNF-alpha. In conclusion, NF71 efficiently delivers miRNA mimics into KCs as well as DCs, and therefore may have advantage in therapeutic delivery of miRNAs in case of inflammatory skin diseases.
  •  
14.
  • Ezzat, Kariem, et al. (författare)
  • Scavenger receptor-mediated uptake of cell-penetrating peptide nanoparticles with oligonucleotides
  • 2012
  • Ingår i: The FASEB Journal. - : Wiley. - 0892-6638 .- 1530-6860. ; 26:3, s. 1172-1180
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell-penetrating peptides (CPPs) are shortcationic peptides that penetrate cells by interacting withthe negatively charged plasma membrane; however, thedetailed uptake mechanism is not clear. In contrary to theconventional mode of action of CPPs, we show here thata CPP, PepFect14 (PF14), forms negatively charged nanocomplexeswith oligonucleotides and their uptake is mediatedby class-A scavenger receptors (SCARAs). Specificinhibitory ligands of SCARAs, such as fucoidin, polyinosinicacid, and dextran sulfate, totally inhibit the activityof PF14-oligonucleotide nanocomplexes in the HeLapLuc705 splice-correction cell model, while nonspecific,chemically related molecules do not. Furthermore, RNAinterference (RNAi) knockdown of SCARA subtypes(SCARA3 and SCARA5) that are expressed in this cell lineled to a significant reduction of the activity to <50%. Inline with this, immunostaining shows prevalent colocalizationof the nanocomplexes with the receptors, and electronmicroscopy images show no binding or internalizationof the nanocomplexes in the presence of theinhibitory ligands. Interestingly, naked oligonucleotidesalso colocalize with SCARAs when used at high concentrations.These results demonstrate the involvement ofSCARA3 and SCARA5 in the uptake of PF14-oligonucleotidenanocomplexes and suggest for the first time thatsome CPP-based systems function through scavenger receptors,which could yield novel possibilities to understandand improve the transfection by CPPs.
  •  
15.
  • Freimann, Krista, et al. (författare)
  • Formulation of Stable and Homogeneous Cell-Penetrating Peptide NF55 Nanoparticles for Efficient Gene Delivery In Vivo
  • 2018
  • Ingår i: Molecular Therapy Nucleic Acids. - : Elsevier BV. - 2162-2531. ; 10, s. 28-35
  • Tidskriftsartikel (refereegranskat)abstract
    • Although advances in genomics and experimental gene therapy have opened new possibilities for treating otherwise incurable diseases, the transduction of nucleic acids into the cells and delivery in vivo remain challenging. The high molecular weight and anionic nature of nucleic acids require their packing into nanoparticles for the delivery. The efficacy of nanoparticle drugs necessitates the high bioactivity of constituents, but their distribution in organisms is mostly governed by the physical properties of nanoparticles, and therefore, generation of stable particles with strictly defined characteristics is highly essential. Using previously designed efficient cell-penetrating peptide NF55, we searched for strategies enabling control over the nanoparticle formation and properties to further improve transfection efficacy. The size of the NF55/pDNA nanoparticles correlates with the concentration of its constituents at the beginning of assembly, but characteristics of nanoparticles measured by DLS do not reliably predict the applicability of particles in in vivo studies. We introduce a new formulation approach called cryo-concentration, where we acquired stable and homogeneous nanoparticles for administration in vivo. The cryo-concentrated NF55/pDNA nanoparticles exhibit several advantages over standard formulation: They have long shelf-life and do not aggregate after reconstitution, have excellent stability against enzymatic degradation, and show significantly higher bioactivity in vivo.
  •  
16.
  • Holm, Tina, et al. (författare)
  • Retro-inversion of certain cell-penetrating peptides causes severe cellular toxicity
  • 2011
  • Ingår i: Biochimica et Biophysica Acta. - : Elsevier BV. - 0006-3002 .- 1878-2434 .- 0005-2736. ; 1808:6, s. 1544-1551
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell-penetrating peptides (CPPs) are a promising group of delivery vectors for various therapeutic agents but their application is often hampered by poor stability in the presence of serum. Different strategies to improve peptide stability have been exploited, one of them being "retro-inversion" (RI) of natural peptides. With this approach the stability of CPPs has been increased, thereby making them more efficient transporters. Several RI-CPPs were here assessed and compared to the corresponding parent peptides in different cell-lines. Surprisingly, treatment of cells with these peptides induced trypsin insensitivity and rapid severe toxicity in contrast to l-peptides. This was measured as reduced metabolic activity and condensed cell nuclei, in parity with the apoptosis inducing agent staurosporine. Furthermore, effects on mitochondrial network, focal adhesions, actin cytoskeleton and caspase-3 activation were analyzed and adverse effects were evident at 20μM peptide concentration within 4h while parent l-peptides had negligible effects. To our knowledge this is the first time RI peptides are reported to cause cellular toxicity, displayed by decreased metabolic activity, morphological changes and induction of apoptosis. Considering the wide range of research areas that involves the use of RI-peptides, this finding is of major importance and needs to be taken under consideration in applications of RI-peptides.
  •  
17.
  • Holm, Tina, et al. (författare)
  • Studying the uptake of cell-penetrating peptides
  • 2006
  • Ingår i: Nature Protocols. - : Springer Science and Business Media LLC. - 1754-2189 .- 1750-2799. ; 1:2, s. 1001-1005
  • Tidskriftsartikel (refereegranskat)abstract
    • More than a decade ago, it was discovered that cationic peptides could traverse the cellular plasma membrane without specific transporter proteins or membrane damage. Subsequently, it was found that these peptides, known as cell-penetrating peptides (CPPs), were also capable of delivering cargos into cells, hence the great potential of these vectors was acknowledged. Today, many different research groups are working with CPPs, which necessitates efforts to develop unified assays enabling the comparison of data. Here we contribute three protocols for evaluation of CPPs which, if used in conjunction, provide complementary data about the amount and mechanism of uptake (fluorometric analysis and confocal microscopy, respectively), as well as the extent of degradation (HPLC analysis of cell lysates). All three protocols are based on the use of fluorescently labeled peptides and can be performed on the same workday.
  •  
18.
  • Juks, Carmen, et al. (författare)
  • Cell-penetrating peptides recruit type A scavenger receptors to the plasma membrane for cellular delivery of nucleic acids
  • 2017
  • Ingår i: The FASEB Journal. - 0892-6638 .- 1530-6860. ; 31:3, s. 975-988
  • Tidskriftsartikel (refereegranskat)abstract
    • Scavenger receptors (SRs) are a large family of multifunctional receptors that are involved in a range of physiologic and pathologic processes. The ability of class A scavenger receptors (SR-As) to bind anionic ligands facilitates the internalization of negatively charged cell-penetrating peptide (CPP)-nucleic acid nanocomplexes and thus makes them attractive targets for delivery of various nucleic acids. Recently, we demonstrated that SR-A3 and SR-A5 are recruited from intracellular membranes to the plasma membrane after incubation with PepFect 14-splice-switching oligonucleotide complexes. Here, we examined the mechanisms responsible for translocation of SR-As to the cell surface. We demonstrate that, in addition to nanocomplexes, some amphipathic CPPs are able to induce externalization of SR-A3 and SR-A5, and this process requires the presence of calcium ions. Furthermore, translocation of SR-A3 and SR-A5 requires activity of phosphatidylinositol-3-kinase, intact actin cytoskeleton, and the presence of serum proteins in culture medium.
  •  
19.
  • Kilk, Kalle, et al. (författare)
  • Cellular internalization of a cargo complex with a novel peptide derived from the third helix of the islet-1 homeodomain : Comparison with the penetratin peptide
  • 2001
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 12:6, s. 911-916
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellular translocation into a human Bowes melanoma cell line was investigated and compared for penetratin and pIsl, two peptides that correspond to the third helices of the related homeodomains, from the Antennapedia transcription factor of Drosophila and the rat insulin-1 gene enhancer protein, respectively. Both biotinylated peptides internalized into the cells with similar efficacy, yielding an analogous intracellular distribution. When a large cargo protein, 63 kDa avidin, was coupled to either peptide, efficient cellular uptake for both the peptide−protein complexes was observed. The interactions between each peptide and SDS micelles were studied by fluorescence spectroscopy and acrylamide quenching of the intrinsic tryptophan (Trp) fluorescence. Both peptides interacted strongly and almost identically with the membrane mimicking environment. Compared to penetratin, the new transport peptide pIsl has only one Trp residue, which simplifies the interpretation of the fluorescence spectra and in addition has a native Cys residue, which may be used for alternative coupling reactions of cargoes of different character.
  •  
20.
  • Kilk, Kalle, et al. (författare)
  • Targeting of antisense PNA oligomers to human galanin receptor type 1 mRNA
  • 2004
  • Ingår i: Neuropeptides. - : Elsevier BV. - 0143-4179 .- 1532-2785. ; 38:5, s. 316-324
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we have targeted positions 18–38 of the human galanin receptor type 1 (GalR1) mRNA coding sequence with different peptide nucleic acid (PNA) oligomers. This region has previously been shown to be a good antisense region and therefore we aimed to identify the subregions and/or thermodynamic parameters determining the antisense efficacy. Nine different PNA oligomers were conjugated to a cell-penetrating peptide, transportan, to enhance their cellular uptake. Concentration-dependent down-regulation of GalR1 protein expression in human melanoma cell line Bowes was measured by radioligand binding assay. No reduction of GalR1 mRNA level was observed upon PNA treatment, thus, the effect was concluded to be translational arrest. Judging from the EC50 values, antisense PNA oligomers targeting regions 24–38 (EC50 = 70 nM) or 27–38 (EC50 = 80 nM) were the most potent suppressors of protein expression. No parameter predicted by M-fold algorithm was found to correlate with the measured antisense activities. Presence of some subregions was found not to increase antisense efficiency of PNA. Presence of a short unpaired triplet between nucleotides 33 and 35 in the target region was, on the other hand, found to be the most critical for efficient GalR1 down-regulation. Thus, the results are of high impact in designing antisense oligomers. Specific results of this study demonstrate 20-fold more efficient antisense down-regulation of GalR1 as achieved before.
  •  
21.
  •  
22.
  • Lorents, Annely, et al. (författare)
  • Arginine-Rich Cell-Penetrating Peptides Require Nucleolin and Cholesterol-Poor Subdomains for Translocation across Membranes
  • 2018
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 29:4, s. 1168-1177
  • Tidskriftsartikel (refereegranskat)abstract
    • Proficient transport vectors called cell-penetrating peptides (CPPs) internalize into eukaryotic cells mostly via endocytic pathways and facilitate the uptake of various cargo molecules attached to them. However, some CPPs are able to induce disturbances in the plasma membrane and translocate through it seemingly in an energy-independent manner. For understanding this phenomenon, giant plasma membrane vesides (GPMVs) derived from the cells are a beneficial model system, since GPMVs have a complex membrane composition comparable to the cells yet lack cellular energy dependent mechanisms. We investigated the translocation of arginine-rich CPPs into GPMVs with different membrane compositions. Our results demonstrate that lower cholesterol content favors accumulation of nona-arginine and, additionally, sequestration of cholesterol increases the uptake of the CPPs in vesicles with higher cholesterol packing density. Furthermore, the proteins on the surface of vesicles are essential for the uptake of arginine-rich CPPs: downregulation of nudeolin decreases the accumulation and digestion of proteins on the membrane suppresses translocation even more efficiently.
  •  
23.
  • Lorents, Annely, et al. (författare)
  • Cell-penetrating Peptides Split into Two Groups Based on Modulation of Intracellular Calcium Concentration
  • 2012
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 287:20, s. 16880-16889
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell-penetrating peptides (CPPs) promote the uptake of different cargo molecules, e.g. therapeutic compounds, making the harnessing of CPPs a promising strategy for drug design and delivery. However, the internalization mechanisms of CPPs are still under discussion, and it is not clear how cells compensate the disturbances induced by peptides in the plasma membrane. In this study, we demonstrate that the uptake of various CPPs enhances the intracellular Ca2+ levels in Jurkat and HeLa cells. The elevated Ca2+ concentration in turn triggers plasma membrane blebbing, lysosomal exocytosis, and membrane repair response. Our results indicate that CPPs split into two major classes: (i) amphipathic CPPs that modulate the plasma membrane integrity inducing influx of Ca2+ and activating downstream responses starting from low concentrations; (ii) non-amphipathic CPPs that do not evoke changes at relevant concentrations. Triggering of the membrane repair response may help cells to replace distorted plasma membrane regions and cells can recover from the influx of Ca2+ if its level is not drastically elevated.
  •  
24.
  • Padari, Kart, et al. (författare)
  • S4(13)-PV Cell-Penetrating Peptide Forms Nanoparticle-Like Structures to Gain Entry Into Cells
  • 2010
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 21:4, s. 774-783
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite increasing interest in cell-penetrating peptides (CPPs) as carriers for drugs and in gene therapy, the current understanding of their exact internalization mechanism is still far from complete. The cellular translocation of CPPs and their payloads has been mostly described by fluorescence- and activity-based methods, leaving the more detailed characterization at the ultrastructural level almost out of attention. Herein, we used transmission electron microscopy to characterize the membrane interaction and internalization of a cell-penetrating peptide S4(13)-PV. We demonstrate that S4(13)-PV peptide forms spherical nanoparticle-like regular structures upon association with cell surface glycosaminoglycans on the plasma membrane. Insertion of S4(13)-PV particles into plasma membrane induces disturbances and leads to the vesicular uptake of peptides by cells. We propose that for efficient cellular translocation S4(13)-PV peptides have to assemble into particles of specific size and shape. The spherical peptide particles are not dissociated in intracellular vesicles but often retain their organization and remain associated with the membrane of vesicles, destabilizing them and promoting the escape of peptides into cytosol. Lowering the temperature and inhibition of dynamins' activity reduce the internalization of S4(13)-PV peptides, but do not block it completely. Our results provide an ultrastructural insight into the interaction mode of CPPs with the plasma membrane and the distribution in cells, which might help to better understand how CPPs cross the biological membranes and gain access into cells.
  •  
25.
  • Pae, Janely, et al. (författare)
  • Glycosaminoglycans are required for translocation of amphipathic cell-penetrating peptides across membranes
  • 2016
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642. ; 1858:8, s. 1860-1867
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell-penetrating peptides (CPPs) are considered as one of the most promising tools to mediate the cellular delivery of various biologically active compounds that are otherwise cell impermeable. CPPs can internalize into cells via two different pathways - endocytosis and direct translocation across the plasma membrane. In both cases, the initial step of internalization requires interactions between CPPs and different plasma membrane components. Despite the extensive research, it is not yet fully understood, which of these cell surface molecules mediate the direct translocation of CPPs across the plasma- and endosomal membrane. In the present study we used giant plasma membrane vesicles (GPMVs) as a model membrane system to elucidate the specific molecular mechanisms behind the internalization and the role of cell surface glycosaminoglycans (GAGs) in the translocation of four well-known CPPs, classified as cationic (nona-arginine, Tat peptide) and amphipathic (transportan and TP10). We demonstrate here that GAGs facilitate the translocation of amphipathic CPPs, but not the internalization of cationic CPPs; and that the uptake is not mediated by a specific GAG class, but rather the overall amount of these polysaccharides is crucial for the internalization of amphipathic peptides.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 39

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy